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We construct a semiclassical theory for propagation of an optical wave packet in a nonconducting medium
with a periodic structure of dielectric permittivity and magnetic permeability, i.e., a nonconducting photonic
crystal. We employ a quantum-mechanical formalism in order to clarify its link to those of electronic systems.
It involves the geometrical phase, i.e., Berry’s phase, in a natural way, and describes an interplay between
orbital motion and internal rotation. Based on the above theory, we discuss the geometrical aspects of the
optical Hall effect. We also consider a reduction of the theory to a system without periodic structure and apply
it to the transverse shift of an optical beam at an interface reflection or refraction. For a generic incident beam
with an arbitrary polarization, an identical result for the transverse shift of each reflected or transmitted beam
is given by the following different approaches: �i� analytic evaluation of wave-packet dynamics, �ii� total
angular momentum �TAM� conservation for individual photons, and �iii� numerical simulation of wave-packet
dynamics. It is consistent with a result by classical electrodynamics. This means that the TAM conservation for
individual photons is already taken into account in wave optics, i.e., classical electrodynamics. Finally, we
show an application of our theory to a two-dimensional photonic crystal, and propose an optimal design for the
enhancement of the optical Hall effect in photonic crystals.
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I. INTRODUCTION

The geometrical phase known as the Berry phase �1� has
been attracting extensive interest in various fields, e.g., op-
tics, molecular physics, nuclear physics, and condensed mat-
ter physics �2,3�. In particular, in condensed matter physics,
important roles of the geometrical phase in electronic trans-
port phenomena have been intensively studied in the past
several years, and great strides has been made both in theo-
retical and experimental researches. Although a hint of the
Berry phase was recognized a long time ago as the anoma-
lous velocity in ferromagnets which leads to the anomalous
Hall effect �4,5�, it was only after the discovery of the quan-
tum Hall effect that the role of the Berry phase in electron
transport began to be recognized. In the quantum Hall sys-
tem under strong magnetic field, the Hall conductance was
related to the topological integer, i.e., the Chern number
�6–8�. A recent development is the finding that the Berry
phase structure is a fundamental characteristic of Bloch wave
functions even in ordinary systems. From this viewpoint, the
similarity between the anomalous and quantum Hall effects
has been revealed �9–11�. The spin Hall effect based on the
geometrical mechanism has also been proposed recently and
has opened a new stage of spintronics �12,13�. All of these
effects are understood from the concept of the generalized
anomalous velocity due to the Berry phase. In other words, a
trajectory of an electron is affected by the Berry phase.

In optics, one can also find some phenomena related to
the Berry phase. A change of polarization of light during

propagation in an inhomogeneous medium has been theoreti-
cally studied in the early days �14–16�. This effect has
been clearly demonstrated in a helically wound optical
fiber and related with the Berry phase �17–19�. Its influence
on the trajectory of light has been studied recently by
deriving a set of semiclassical equations of motion �20�.
From this viewpoint, there are several optical phenomena
which are now interpreted as a change of light trajectory due
to the Berry phase. One is the transverse shift in reflection
and refraction at an interface between two homogeneous me-
dia �21–28� �this effect in the case of internal total reflection
is called an Imbert-Fedorov shift�. The other is a rotation of
the beam inside an optical fiber, which is sometimes called
an optical Magnus effect �29–31�. These phenomena can be
coined the optical Hall effect, because of the similarity to the
topological Hall effects �6–13� in electronic systems.

Attribution of these optical phenomena to the Berry phase
is not merely a re-interpretation, but also can open a new
frontier for novel phenomena. The present authors �20� pro-
posed that in photonic crystals, i.e., systems with periodic
structures of dielectric permittivity or magnetic permeability
�32,33�, the optical Hall effect is enhanced by an order of
magnitude more than the above-mentioned examples. It is
inspired by its electronic counterpart; the topological Hall
effects are known to be enhanced by periodic potentials, par-
ticularly when two bands come close in energy. Thus by
designing a photonic crystal to have near-degenerate bands,
the predicted shift of a light beam is large enough to be
observable in experiments �20�. To calculate and design such
photonic crystals in a quantitative way, a semiclassical
Berry-phase theory applicable to photonic crystals is called
for. For this purpose, we take the approach by the variational
principle �34–37� in our previous �20� and present papers.
This is because it is rather difficult to fully incorporate the

*Electronic address: m.onoda@aist.go.jp
†Electronic address: murakami@appi.t.u-tokyo.ac.jp
‡Electronic address: nagaosa@appi.t.u-tokyo.ac.jp

PHYSICAL REVIEW E 74, 066610 �2006�

1539-3755/2006/74�6�/066610�29� ©2006 The American Physical Society066610-1

http://dx.doi.org/10.1103/PhysRevE.74.066610


vectorial nature of electromagnetic waves for generic cases
like photonic crystals by other approaches �30,31� which use
an eikonal approximation.

In the previous work �20�, we have briefly reported the
essence of the optical Hall effect and the mechanism of its
enhancement in photonic crystals. In the present paper, we
construct a semiclassical theory of an optical wave packet �or
a photon wave packet� in full detail by keeping its close
connection to a theory of an electron wave packet. It incor-
porates the Berry phase in a natural way. The main focus of
the present paper is to present basics of the extended geo-
metrical optics applicable to photonic crystals which are at-
tracting great interest as new optical materials. Photonic
crystals can be designed to have desired band structures, with
an aid of first-principle numerical calculations, which en-
ables the control of many novel properties of lights �32,33�.
To serve this purpose, our theory is presented in a transparent
way suitable for the first-principle numerical calculations. As
is briefly presented in our previous work �20�, the effect of
the geometrical phase on an optical wave packet can be in-
corporated in the same manner as that in electronic systems.
These generalized equations of motion correctly describe the
interplay between the orbital motion and the internal rota-
tion, e.g., polarization, of a wave packet. The optical Hall
effect, i.e., the effect similar to the Hall effects in electronic
systems, is derived as a consequence of the equations of
motion in photonic systems with periodic structures. Indeed,
our equations of motion are analogous to the semiclassical
equations of motion for electron wave packets in solids
�36,37�. However, the latter basically considered spinless
electrons. In the case of optics, the polarization degrees of
freedom has to be taken into account and the Berry connec-
tion is non-Abelian in general. In this sense, an optical wave
packet is more similar to a spinful electron wave packet.

Below, for simplicity, we focus on a light propagating in a
nonconducting medium in which there is neither electric nor
magnetic order, i.e., the dielectric permittivity �J�r� and the
magnetic permeability �J�r� are symmetric tensors. Also their
frequency dependences are neglected for simplicity. These
conditions ensure the equation of continuity of electromag-
netic energy �38� and we can construct the unitary theory of
electromagnetic field. Based on this theory, the semiclassical
equations of motion can be derived on an equal footing with
electronic systems in which the semiclassical equations of
motion are derived from quantum mechanics. In order to
stress the analogy between electronic and photonic systems,
we formulate a theory for Bloch states of electromagnetic
field in a quantum-mechanical formalism. Although we focus
on the unitary theory in this paper, its extension to a nonuni-
tary version for systems with electric or magnetic order and
conducting systems would give some insights to the interest-
ing phenomena and proposals, e.g., the photonic Hall effect
in a scattering media subject to an external magnetic field
�39,40�, the magnetically induced deflection due to the
Pitaevskii magnetization �41–46�, the one-way waveguide of
edge states in magnetic photonic crystals �47,48�, and
Lorentz force on the light due to the toroidal moment �49�.

The reduction to a system without periodic structure is
straightforward. Indeed, in the previous work �20�, we have
presented a simple application of our theory to the transverse

shift in the reflection or refraction at an interface, and found
that this shift is governed by the conservation of total angular
momentum �TAM� for reflected and refracted photons indi-
vidually. We have also numerically demonstrated the validity
of our theory for the case of an incident wave packet with
circular polarization. However, very recently, the transverse
shift evaluated by the conservation of TAM has been ques-
tioned �50� for the cases of incident wave packets with ellip-
tic polarizations. In this paper, we present an additional way
of estimating the transverse shift from the asymptotic form
of a wave packet, and also numerical calculations for generic
polarized states. As an important consequence from the study
on this issue, we find that an identical result for the shift of
each beam is given by �i� analytic evaluation of wave-packet
dynamics, �ii� TAM conservation for individual photons in
Ref. �20�, and �iii� numerically exact simulation of wave-
packet dynamics. This agreement in different approaches
supports the validity of the present theory claiming that the
transverse shift is governed by the conservation of TAM for
individual photons. This identical result obtained by the
above different approaches is also consistent with that ob-
tained by a more conventional approach based on classical
electrodynamics �26,27�. In other words, the TAM conserva-
tion for individual photons is already taken into account in
wave optics, i.e., classical electrodynamics.

For a broad readership, we divide the main contents into
two sections; Sec. II is devoted to formalisms, explaining in
full detail the derivations of the theory and the resulting for-
mulas, while in Sec. III we focus on two applications of the
theory: the transverse shift in interface reflection or refrac-
tion, and the optical Hall effect in a two-dimensional photo-
nic crystal. Readers who are mainly interested in the appli-
cations can skip Sec. II and jump to Sec. III. For this purpose
we make Sec. III self-consistent.

The plan of this paper is as follows. In Sec. II A, an elec-
tromagnetic field in a nonconducting medium is quantized in
the Hamilton-Jacobi formalism by introducing the Dirac
bracket for the constrained system. Some quantum operators
for physical observables are also presented. Eigenstates in a
periodic system are discussed in Sec. II B for the application
to a photonic crystal. In Sec. II C, we consider a perturbed
modulation superimposed on a background periodic structure
and discuss corrections for the eigenstates and the expecta-
tion values of physical observables for an optical wave
packet. The equations of motion are derived taking into ac-
count the Berry phase and the perturbed modulation. An ap-
plication of our theory to reflection or refraction problem at a
flat interface is discussed in Sec. III A by reducing the theory
to the case without periodic structure. Recently some criti-
cisms are raised against our approach to this reflection or
refraction problem �50�. Remarks on these criticisms are pre-
sented in Sec. III B. In Sec. III C, we apply our theory to a
two-dimensional photonic crystal and present some
examples of Berry curvatures and internal rotations.

Section IV is devoted to the discussion on the implica-
tions of the present work to a wider range of phenomena in
physics. Related previous works are mentioned here.
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II. FORMALISMS

A. Electromagnetic field in a nonconducting medium

We consider an electromagnetic field in a nonconducting
medium with a generic modulation but without electric or
magnetic orders, and begin with the following Lagrangian:

L =
1

2
� dr�E�r,t� · D�r,t� − H�r,t� · B�r,t�� , �1�

where

D�r,t� = �J�r�E�r,t� = �J�r��− �tA�r,t� − �r��r,t�� , �2a�

B�r,t� = �J�r�H�r,t� = �r � A�r,t� . �2b�

We take the unit in which �=c=1 where c is the speed of
light in a vacuum. The medium where light propagates is
treated as an insulating material, which is characterized by
the dielectric permittivity �J�r� and the magnetic permeability
�J�r�. These are assumed to be locally symmetric and real-
valued tensors, and their frequency dependences are ne-
glected. As mentioned in Sec. I, the equation of continuity
for the electromagnetic energy holds under these conditions
�38�. It should be noted that they are the sufficient conditions
but not the necessary conditions. The functional derivatives
with respect to �tA�r , t� and �t��r , t� determine the canonical
momenta ��r , t� for A�r , t� and ���r , t� for ��r , t�, respec-
tively. The former gives the canonical definition of ��r , t� as
��r , t�=−D�r , t�, while the latter gives the constraint
���r , t�=0. Here we introduce the Lagrange multiplier
���r , t� for this constraint, and the Hamiltonian is given by

H =� dr��r,t� · �tA�r,t� − L +� dr���r,t����r,t�

= H0 +� dr�− ��r� · �r��r� + ���r����r�� , �3a�

H0 =
1

2
� dr���r��J−1�r���r�

+ ��r � A�r���J−1�r���r � A�r��� . �3b�

In order for the constraint ���0 to be consistently satisfied,
the following additional constraint is required:

����r�,H�P = − �r · ��r� � 0, �4�

where �¯�P is the Poisson bracket. The symbol “�” means
“weak equality” which is satisfied when all constraints are
imposed �51�. When the Poisson brackets among a set of
constraints and a Hamiltonian vanish on a constrained sub-
space, these constraints are called first-class constraints by
definition. On the other hand, when the Poisson brackets of
these constraints among themselves do not vanish even on
the constrained subspace, we call them second-class con-
straints. In the present case, ���r� and �r ·��r� commute
with each other, and the commutation relation between
�r · � �r� and the Hamiltonian generates no additional con-
straint. So the present system has two first-class constraints,

�1�r� 	 ���r� � 0, �5a�

�2�r� 	 �r · ��r� � 0. �5b�

In order to make a canonical formalism for such a con-
strained system, all the first-class constraints are transformed
to be second class by introducing gauge fixing conditions.
Here we take the following gauge conditions:

�3�r� 	 ��r� � 0, �6a�

�4�r� 	 �r�J�r�A�r� � 0. �6b�

Then the commutation relations between the original
constraints and the gauge conditions are represented by

CJ�r,r�� = ��	�r�,�
�r���P = 
 0 − CJ�r,r��

CJ�r,r�� 0
� , �7a�

CJ�r,r�� = 
��r − r�� 0

0 − �r�J�r��r��r − r��
� . �7b�

Introducing Lagrange multipliers for the constraints
including the gauge conditions, we redefine the Hamiltonian
as

H = H0 +� dr��r� · ��r� , �8�

where ��r�= ��1�r� ,�2�r� ,�3�r� ,�4�r�� and ��r�
= ��1�r� ,�2�r� ,�3�r� ,�4�r��. The Lagrange multipliers are
determined by the conditions ���r� ,H�P�0 and given by

��r� = −� dr�CJ−1�r,r�����r��,H0�P, �9�

where

CJ−1�r,r�� = 
 0 CJ−1�r,r��

− CJ−1�r,r�� 0
� , �10a�

CJ−1�r,r�� = 
��r − r�� 0

0 g�r,r��
� , �10b�

and g�r ,r�� satisfies

�r�J�r��rg�r,r�� = �r��J
T�r���r�g�r,r�� = − ��r − r�� .

�11�

As a preparation for the quantum theory of this system,
we introduce the Dirac bracket defined by

�F,G�D = �F,G�P −� drdr��F,��r��PCJ−1�r,r�����r��,G�P.

�12�

Especially for A�r� and ��r�, we obtain the following
relation:
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�Ai�r�,� j�r���D = � j
i��r − r�� − �

k

�r
i�Jjk

T �r���r�
k g�r,r�� ,

�13�

and this leads to the relation between the physical
observables,

�Bi�r�,Dj�r���D = �
k

�ijk�r
k��r − r�� , �14�

where �ijk is the completely antisymmetric tensor defined
using �xyz=1. It is noted that this relation is the same as that
in the vacuum, while that between E�r� and H�r� is not the
case. The equations of motion are derived as

�tA�r,t� = �A�r,t�,H�D � �J−1�r���r,t� , �15a�

�t��r,t� = ���r,t�,H�D = − �r � ��J−1�r���r � A�r,t��� .

�15b�

The above equations are equivalent to the Maxwell equations

�tD�r,t� = �r � H�r,t� , �16a�

�tB�r,t� = − �r � E�r,t� , �16b�

�r · D�r� = �r · B�r� = 0. �16c�

The present system is straightforwardly quantized by the
identification as i�F ,G�D→ �F ,G�. Especially, the basic
commutation relation, Eq. �14�, is quantized as follows:

�Bi�r�,Dj�r��� = i�
k

�ijk�r
k��r − r�� . �17�

Here we introduce some quantum operators which are useful
to check the property of a wave packet. They are the Hamil-
tonian H, the center of the position R weighted by energy
density, the energy current �the Poynting vector� P, and the
rotation of energy current J, which are respectively defined
by

H =
1

2
� dr�E�r� · D�r� + H�r� · B�r�� , �18a�

R =
1

2
� drr�E�r� · D�r� + H�r� · B�r�� , �18b�

P =
1

2
� dr�E�r� � H�r� − H�r� � E�r�� , �18c�

J =
1

2
� drr � �E�r� � H�r� − H�r� � E�r�� . �18d�

It should be noted that the last two operators are different
from the momentum and angular momentum operators
defined by

P =
1

2
� dr�D�r� � B�r� − B�r� � D�r�� , �19a�

J =
1

2
� drr � �D�r� � B�r� − B�r� � D�r�� , �19b�

while P and J are conceptually close to P and J, respec-
tively. This is because P and J are not necessarily propor-
tional to P and J. In other words, P and J do not necessar-
ily satisfy the algebra of the momentum and the angular
momentum. Therefore in a system with translational and ro-
tational symmetries, what should be conserved are P and J,
rather than P and J. Actually it has been experimentally
confirmed that J is conserved in a dielectric medium with
rotational symmetry �52�. In spite of these shortcomings of
P and J, we focus on P and J when a system has no
continuous translational nor rotational symmetry. This is be-
cause P and J have relatively simple expressions even in a
periodic system as shown in Appendix C. Especially, a part
of J suggests a close relation between the internal rotation
and the Berry curvature in a photonic system, as well as in
the quantum Hall system where the internal rotation of an
spinless electron is originated by the cyclotron motion �36�.
However, when a system has continuous translational and
rotational symmetries, we focus on P and J. This is the case
in the reflection or refraction problem at a flat interface in
Sec. III A. The list of physical observables including the
above operators both in electronic and photonic systems are
given in Table I for comparison.

Finally, it should be noted that the optical Hall effect
comes from the particle-wave duality of an optical wave
packet and the geometrical or topological property of a wave
function. Therefore this effect can be observed in a macro-
scopic wave packet of light described by classical electrody-
namics, when a wave packet under consideration is approxi-
mately coherent. In this sense, the second quantization is not
always necessary. The second quantization is adopted, for
convenience, to calculate a motion of a wave packet on an
equal footing with that of an electronic system, as shown in
Sec. II C. As long as we consider an approximately coherent
wave packet in a single particle approximation of quantum
theory of photon or in a linear approximation of classical
electrodynamics, results obtained by both formalisms coin-
cide with each other as shown in Sec. III A. Detailed remarks
on the relation between quantum and classical pictures of the
optical Hall effect are given in Appendix A.

B. Eigenfunctions in a periodic system

Here we introduce eigenfunctions in a periodic system,

�n�k
F �r,t� = e−iEnkt�n�k

F �r� =
eik·r−iEnkt

2Enk

Un�k
F �r� , �20�

where F=E or H. The symbols n, �, and k represent the band
index, the index for degenerate modes in the nth band, and
the lattice momentum, respectively, and Enk is the energy
eigenvalue of the nth band, which may be degenerate. It
should be noted that the band index n is not needed in locally
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isotropic systems without periodic structure, but we must
keep the index � to distinguish different polarization states.
Un�k

E �r� and Un�k
H �r� are Bloch functions for electric field and

magnetic field, respectively. It should be noted that the lattice
momentum k will be restricted to the first Brillouin zone in
the rest of this paper. The eigenfunctions satisfy the Maxwell
equations

�J�r��t�n�k
E �r,t� = �r � �n�k

H �r,t� , �21a�

�J�r��t�n�k
H �r,t� = − �r � �n�k

E �r,t� , �21b�

�r�J�r��n�k
E �r,t� = �r�J�r��n�k

H �r,t� = 0, �21c�

and they lead to the following eigen equations:

�r � ��J−1�r��r � �n�k
E �r�� = �J�r�Enk

2 �n�k
E �r� , �22a�

�r � ��J−1�r��r � �n�k
H �r�� = �J�r�Enk

2 �n�k
H �r� . �22b�

In the case of �JT�r�=�J�r� and �JT�r�=�J�r�, we can orthonor-
malize the Bloch functions with the same lattice momentum
k as

�
WS

dr

vWS
Un�k

E* �r��J�r�Un���k
E �r� = �nn�����, �23a�

�
WS

dr

vWS
Un�k

H* �r��J�r�Un���k
H �r� = �nn�����, �23b�

where the domain of integration is the unit cell with the
volume vWS. The orthonormality for the eigenfunctions will
be discussed later.

We introduce the Fourier transformation,

Un�k
F �G� = �

WS

dr

vWS
e−iG·rUn�k

F �r� , �24a�

�J�G,G�� = �
WS

dr

vWS
e−i�G−G��·r�J�r� , �24b�

�J�G,G�� = �
WS

dr

vWS
e−i�G−G��·r�J�r� , �24c�

where F=E or H. G represents a reciprocal lattice vector. In
terms of the above representations in the Fourier space, we
introduce the following compact notations for the latter
convenience:

�U� = �U�G0�,U�G1�,U�G2�, ¯ � , �25�

and the tensors,

Pk�G,G�� = �k + G���G,G�� = K��G,G�� , �26a�

�Si� jk�G,G�� = − i�ijk��G,G�� , �26b�

�k
E = Pk · S�J−1Pk · S , �26c�

�k
H = Pk · S�J−1Pk · S , �26d�

where we have introduced the abbreviation K=k+G. The
inner product of the Bloch functions and the algebra of the
above tensors are represented as

�U�V� = �
WS

dr

vWS
U*�r� · V�r� , �27a�

�U�iS�V� = �
WS

dr

vWS
U*�r� � V�r� , �27b�

− iPk · S�U� = �K0 � U�G0�,K1 � U�G1�, ¯ � . �27c�

Thus the orthonormality is rewritten as,

�Un�k
E ��J�Un���k

E � = �nn�����, �28a�

�Un�k
H ��J �Un���k

H � = �nn�����. �28b�

By this notation convention, the Maxwell equations for the
Bloch functions are represented in the following compact
forms:

TABLE I. Operators relevant to wave-packet dynamics. H: Hamiltonian; Ĥ�r�: first-quantized Hamil-
tonian; R: position �dipole moment�; P: �pseudo� momentum; J: angular momentum; ŝ: spin matrix; I: charge
current; M: magnetic moment; v̂�r�: first-quantized velocity; R: position weighted by energy density; P:
energy current; J: rotation of energy current.

Electronic system Photonic system

H �dr†�r�Ĥ�r��r� 1
2 �dr�E�r� ·D�r�+H�r� ·B�r��

R �drr†�r��r� undefined

P �dr†�r��−i�r−eA�r�+eB�r��r� 1
2 �dr�D�r��B�r�−B�r��D�r��

J �dr†�r��r� �−i�r�+ ŝ��r� 1
2 �drr� �D�r��B�r�−B�r��D�r��

I �dr†�r�ev̂�r��r� undefined

M �dr†�r�� e
2r� v̂�r�+g�Bŝ��r� undefined

R 1
2 �dr†�r��Ĥ�r� ,r��r� 1

2 �drr�E�r� ·D�r�+H�r� ·B�r��

P i
2 �dr�H ,†�r��Ĥ�r� ,r��r�� 1

2 �dr�E�r��H�r�−H�r��E�r��

J i
2 �drr� �H ,†�r��Ĥ�r� ,r��r�� 1

2 �drr� �E�r��H�r�−H�r��E�r��
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�JEnk�Un�k
E � = iPk · S�Un�k

H � , �29a�

�JEnk�Un�k
H � = − iPk · S�Un�k

E � , �29b�

�K��J�Un�k
E � = �K��J �Un�k

H � = 0, �29c�

where

�K� = �0, ¯ ,0,k + G,0, ¯ � . �30�

From Eqs. �29a� and �29b�, we can easily derive the
following equations:

�k
E�Un�k

E � = �JEnk
2 �Un�k

E � , �31a�

�k
H�Un�k

H � = �JEnk
2 �Un�k

H � . �31b�

In relativistic systems, the orthonormality for the
eigenfunctions are conventionally represented in terms of the
inner product defined by

�f �g� = i� dr�f*�r,t� · ��tg�r,t�� − ��tf
*�r,t�� · g�r,t�� ,

�32�

and we obtain the following orthonormality relation as
shown in Appendix B:

��n�k
E ��J��n���k�

E � = �nn������̃�k − k�� , �33a�

��n�k
H ��J ��n���k�

H � = �nn������̃�k − k�� , �33b�

��n�k
E* ��J��n���k�

E � = ��n�k
H* ��J ��n���k�

H � = 0. �33c�

where �̃�k−k��= �2��3��k−k��. It should be noted that we
have used �JT�r�=�J�r� and �JT�r�=�J�r� in the derivation of
the above relations. This orthonormality is required to
expand the electric and magnetic fields in terms of the
eigenfunctions as follows:

E�r,t� = �
n,�
�

BZ
dkEnk��n�k

E �r,t�an�k + �n�k
E* �r,t�an�k

† � ,

�34a�

H�r,t� = �
n,�
�

BZ
dkEnk��n�k

H �r,t�an�k + �n�k
H* �r,t�an�k

† � ,

�34b�

where the k integration is over the first Brillouin zone, i.e.,

�
BZ

dk = �
k�1stBZ

dk

�2��3 . �35�

The operators an�k and an�k
† are defined by

an�k =
1

Enk
��n�k

E ��J�E� =
1

Enk
��n�k

H ��J �H�

=� dr��n�k
E* �r� · D�r� + �n�k

H* �r� · B�r�� , �36a�

an�k
† =

1

Enk
�E��J��n�k

E � =
1

Enk
�H��J ��n�k

H �

=� dr�D�r� · �n�k
E �r� + B�r� · �n�k

H �r�� . , �36b�

By using Eq. �17�, the following commutation relation is
obtained:

�an�k,an���k�
† � = �nn������̃�k − k�� . �37�

C. Equations of motion

In order to see the effect of geometrical phase on the
trajectory of a wave packet, a driving force is needed �53�.
This is because the geometrical effect is given by the vector
product between the driving force and the Berry curvature as
we shall see later. In an electronic system, a driving force is
most conventionally produced by the gradient of electric po-
tential. The counterpart in a photonic system is given by the
gradient of �J�r� or �J�r�. Of course, a periodic structure itself
gives a gradient. However, this effect is exactly taken into
account by considering optical Bloch states as shown in Ap-
pendix C where readers can find details about the basic fea-
tures of an optical wave packet in a periodic system. Thus we
regard the deviation from a periodic structure as a driving
force for the Bloch states and treat it perturbatively. Here, the
perturbation is introduced as a modulation superimposed
onto the periodic structure of �J�r� and �J�r� as

�J−1�r� → ��
2�r��J−1�r�, �J−1�r� → ��

2 �r��J−1�r� , �38�

where ���r� and ���r� are scalar functions, and we call them
“the modulation functions” hereafter. This kind of modula-
tion does not change the local symmetries of �J�r� and �J�r�,
and does not violate the energy conservation. We summarize
the definitions of Berry connection and curvature in Table II
and the main results obtained here, i.e., the equations of mo-
tion for an optical wave packet, in Table III. Appendix D
supplements details about the commutation relations and ex-
pectation values of various operators which are needed to
derive the equations of motion in a modulated system.

Now we derive the equations of motion for the dynamics
of an optical wave packet. An exact wave function ���
satisfies the Schrödinger equation

i
d

dt
��� = H��� . �39�

This equation is derived by applying the variational principle
to the quantity �34�

L = ���i
d

dt
− H��� . �40�

It is natural to consider that the trajectory of the wave packet
is determined in terms of the effective Lagrangian which is
given by replacing ��� with a variational wave packet
�W�, characterized mainly by centers of position and wave
vector, rc and kc �35�. Although �W� can be brought closer
to ��� by enlarging the number of variational parameters,
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those concerning the details of the wave packet are neglected
here. This approximation is justified when a modulation
is weak and slowly varying, and has been successfully ap-
plied to the quantum Hall system and gives the semiclassical
understanding of the motion of magnetic Bloch states
�36,37,54�.

In general, the modulation may mix the creation and an-
nihilation operators. Here we consider the situation in which
the modulation is sufficiently weak and time-independent,
and this mixing is negligible. Therefore the approximated
wave packet can be constructed as

�W� = �
BZ

dkw�k,kc,rc,zc,t��
�

zc�an�k;rc

† �0� ,

w�k,kc,rc,zc,t� = wr�k − kc�e−i��k,rc,zc,t�, �41�

where wr�k−kc� is a real function, and wr�k−kc� and zc�

satisfy the normalization conditions, �BZdkwr
2�k−kc�=1 and

�� �zc��2=1, respectively. We assume wr�k−kc� has a sharp
peak around kc=�BZdkwr

2�k−kc�k. Here we require that the
center of wave packet, rc, is self-consistently determined by

rc = �
BZ

dkwr
2�k − kc���k��k,rc,zc,t� − �zc��nk�zc�� ,

�42�

where �nk is the Berry connection defined by

�nk =
1

2
��nk

E + �nk
H � , �43a�

��nk
E ���� = − i�Un�k

E ��J��kUn��k
E � , �43b�

��nk
H ���� = − i�Un�k

H ��J ��kUn��k
H � , �43c�

and we introduced the abbreviation

�zc�M�zc� = �
�,��

zc�
* M���zc��. �44�

The annihilation and creation operators of approximated
eigenmodes are defined by

an�k;rc
=� dr����rc�

���rc�
�n�k

E* �r� · D�r�

+���rc�
���rc�

�n�k
H* �r� · B�r�� , �45a�

an�k;rc

† =� dr����rc�
���rc�

D�r� · �n�k
E �r�

+���rc�
���rc�

B�r� · �n�k
H �r�� . �45b�

These operators satisfy the same commutation relation as
that in a periodic system,

�an�k;rc
,an���k�;rc

† � = �nn������̃�k − k�� . �46�

The approximated eigenmodes depend on the variable rc.
Thus we must consider also the operator �rc

an�k;rc

† when es-
timating the effective Lagrangian. However, we can show
that the contribution from �rc

an�k;rc

† vanishes, by using

�an�k;rc
,�rc

an���k�;rc

† �=0 and an�k;rc
�0�=0.

As was mentioned above, we consider the situation in
which the mixing of the approximated annihilation and cre-
ation operators is negligible and assume that the relation

TABLE II. Berry connection and curvature.

Electronic system Photonic system

Bloch function �Un�k� �Un�k
E �, �Un�k

H �
Normalization �Un�k �Un���k�=�nn����� �Un�k

E ��J�Un���k
E �= �Un�k

H ��J �Un���k
H �=�nn�����

Berry connection ��nk����=−i�Un�k ��kUn��k� �nk= 1
2 ��nk

E +�nk
H �

��nk
E ����=−i�Un�k

E ��J��kUn��k
E �

��nk
H ����=−i�Un�k

H ��J ��kUn��k
H �

Berry curvature �nk=�k��nk+ i�nk��nk �nk=�k��nk+ i�nk��nk

TABLE III. Equations of motion of optical wave packet.

Modulation �−1�r�→��
2�r��−1�r�, �−1�r�→��

2 �r��−1�r�
Effective Lagrangian Leff�kc · ṙc− k̇c · �zc��nkc

�zc�+ i�zc � żc�−Enkc;rc;zc

Equations of motion ṙc=�kc
Enkc;rc;zc

+ k̇c� �zc��nkc
�zc�− i�zc��fc

� ·�nkc
,�nkc

��zc�

k̇c=−�rc
Enkc;rc;zc

, �żc�=−i�k̇c ·�nkc
+ fc

� ·�nkc
��zc�

Perturbed energy Enkc;rc;zc
=Enkc;rc

+ fc
� · �zc��nkc

�zc�

Enkc;rc
=���rc����rc�Enkc

, fc
�=−��rc

ln
���rc�

���rc� �Enkc;rc
, �nkc

= 1
2 ��nkc

E −�nkc

H �
Energy conservation d

dtEnkc;rc;zc
=0
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an�k;rc
�0�=0 holds. The expectation values of H and R are

estimated by the derivative expansion with respect to ���r�
and ���r� as

�W�H�W� � Enkc;rc;zc
, �47a�

�W�R�W� � Enkc;rc
��kc

��kc,rc,zc,t� − �zc��nkc
�zc�� ,

�47b�

where Enk;rc
=���rc����rc�Enk,

Enkc;rc;zc

Enkc;rc

= 1 − ��rc
ln

���rc�
���rc�

� · �zc��nkc
�zc� , �48�

and

�nk =
1

2
��nk

E − �nk
H � . �49�

This function �nk is a difference between the Berry connec-
tions of the electric and magnetic parts. Although
�zc ��nk

E,H �zc� depends on the representations of eigenmodes,
�zc ��nk �zc� does not. This issue is related to the gauge trans-
formation in the k space given in Appendix C2. The property
of �zc ��nk �zc� is also discussed in Appendix E.

In the above evaluations, we assumed that the shape of
wr

2�k−kc� is sufficiently sharp compared to the slow varia-
tions of Enk;rc

and �nk�k� around kc, and neglected terms
which depend on the shape of wr

2�k−kc�. Therefore even
with the perturbative modulation, we can regard rc defined
by Eq. �42� as the center of gravity �W �R �W� / �W �H �W�. In
the present approximation, we assume that the modulation is
so weak and smooth that we can neglect the second-order
derivatives of the modulation functions in the effective
Lagrangian and the equations of motion, which we shall de-
rive later. In the equations of motion, the difference between
rc and the center of gravity appears as higher derivatives than
the original derivatives. Therefore we may neglect the differ-
ence between rc and the center of gravity due to the deriva-
tives of the modulation functions, while we cannot neglect
the correction due to the first derivatives in �W �H �W�.

Here we introduce the effective Lagrangian in order to
derive the equations of motion of a wave packet.

Leff = �W�i
d

dt
− H�W� . �50�

The first term on the right-hand side of Eq. �50� is calculated
as follows:

�W�i
d

dt
�W� � kc · ṙc − k̇c · �zc��nkc

�zc� + i�zc�żc�

+
d

dt��BZ
dkwr

2�k − kc���k,rc,zc,t� − kc · rc� .

�51�

Neglecting the total time derivative, we obtain the final form
of the effective Lagrangian,

Leff � kc · ṙc − k̇c · �zc��nkc
�zc� + i�zc�żc� − Enkc;rc;zc

. �52�

From this Lagrangian, the equations of motion are derived as
follows:

ṙc = �kc
Enkc;rc;zc

+ k̇c � �zc��nkc
�zc� − i�zc��fc

� · �nkc
,�nkc

��zc� ,

�53a�

k̇c = − �rc
Enkc;rc;zc

, �53b�

�żc� = − i�k̇c · �nkc
+ fc

� · �nkc
��zc� , �53c�

where

fc
� = − ��rc

ln
���rc�
���rc�

�Enkc;rc
, �54�

and �nk is the Berry curvature defined by

�nk = �k � �nk + i�nk � �nk. �55�

It should be noted that the above equations of motion
satisfy the energy conservation, i.e.,

d

dt
Enkc;rc;zc

= 0. �56�

Rigorously speaking, a Lagrange multiplier is needed for the
constraint �zc �zc�=�� �zc��2=1 in the derivation of the equa-
tions of motion, while the constraint is implicitly imposed
here. Therefore in the above equations of motion, we should
consider that this constraint is always imposed.

In generic cases with periodic structures, we cannot ana-
lytically evaluate �nk, �nk, or �nk. However, in principle,
we can numerically calculate them and thus solve the equa-
tions of motion of a wave packet subject to a modulation
superimposed onto a periodic structure. Appendix E presents
formulae for �nk and �nk as well as the internal rotation of a
wave packet, which are useful for numerical calculations.
Although the relation �zc ��nk

E �zc�= �zc ��nk
H �zc� is not gener-

ally proved, this can be confirmed at least for some systems
with locally isotropic ��r� and ��r�, e.g., for the elliptically
polarized light in systems without periodic structure and for
the TM modes in two-dimensional photonic crystals where �
is constant. In this case with �nk=0, we can replace the
perturbed energy as Enkc;rc;zc

→Enkc;rc
=���rc����rc�Enkc

.
Finally, it is noted that the optical Hall effect is originated

by the second term on the right-hand side of Eq. �53a�, which
is sometimes called “anomalous velocity.” The anomalous
velocity is the vector product of the Berry curvature

�zc ��nkc
�zc� and the driving force k̇c, i.e., the gradient of a

superimposed modulation. Therefore both of the driving
force and the Berry curvature are needed for this phenom-
enon. In an electronic system under a strong magnetic field,
it is pointed out that the Berry curvature is closely related to
the internal rotation of an electron wave packet �36�. Thus a
similar relation is also expected in a photonic system. Actu-
ally, in Appendixes C and E, we can see the close relation
between the Berry curvature and the internal rotation of an
optical wave packet.
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III. APPLICATIONS

A. Transverse shift in reflection and refraction

As an application of the theoretical framework developed
in Sec. II, we consider the case with locally isotropic dielec-
tric permittivity ��r� and magnetic permeability ��r�. �See
Tables II and III where the main results in Sec. II are sum-
marized.� In this case, we can write down the equations of
motion �53a�–�53c� in simple forms. For this purpose, we
first calculate the Berry connection �k and the Berry curva-
ture �k. In a helicity basis, the eigenvectors for the right
�+�- and left���-circular polarizations can be written as

U±,k
E =

1
2�

�e� ± ie��, U±,k
H =

1
2�

�e� � ie�� , �57�

where e�,� with ek=k /k are the orthogonal unit vectors in the
spherical coordinate of the k space. After some calculations
we obtain

�k
E = �k

H = −
cos �

k sin �
�3e�, �58�

which then yields �55�

�k = −
cos �

k sin �
�3e�, �k =

k

k3�3, �k = 0. �59�

Thus the equations of motion are simplified as follows:

ṙc = v�rc�
kc

kc
+ k̇c � �zc��kc

�zc� , �60a�

k̇c = − ��rc
v�rc��kc, �60b�

�żc� = − ik̇c · �kc
�zc� , �60c�

where rc, kc, and �zc�= �z+ ,z−� ��z+�2+ �z−�2=1� are the posi-
tion, the momentum, and the polarization state of an optical
wave packet, respectively, and v�r�=1/��r���r�. As is
analogous to the Hall effects in electronic systems, the sec-
ond term on the right-hand side of Eq. �60a� describes the
optical Hall effect induced by a modulation of refractive in-
dex �20�. The equation for �zc�, Eq. �60c�, describes a phase
shift by the directional change of propagation discussed in
Refs. �17–19�. This equation gives the solution �zc

out�
= �e−i�z+

in ,ei�z−
in�, where �zc

in�= �z+
in ,z−

in� is the initial state of
polarization. � is a solid angle made by the trajectory of
momentum: �=.dk · ��k�++=�SdSk · ��k�++ where dSk is the
surface element in the k space and S is a surface surrounded
by the trajectory. Our approach can be easily generalized to
treat systems with periodic structures on the same footing,
and offers a powerful tool for applications compared with the
eikonal approximation �30�.

The simplest example of the optical Hall effect is realized
as the transverse shift at the interface refraction and reflec-
tion. There have been a number of studies on the shifts
within and out of the incident plane at the total reflection.
The former is well known as the Goos-Hänchen effect
�56,57� and has been explained in terms of the evanescent

wave penetrating into the forbidden region. The latter one,
which is referred to as the Imbert-Fedorov shift, was inter-
preted by Fedorov �21� as an analog of the Goos-Hänchen
effect and was observed experimentally by Imbert using mul-
tiple total reflections �22�, followed by a number of theoret-
ical approaches �23–25�. Furthermore, it was pointed out that
the shift out of the incident plane could also occur in partial
reflection and refraction �25–27�. However, some of the the-
oretical predictions for the amount of shift contradict each
other. One reason is an experimental difficulty for a measure-
ment of the tiny shift, as the shift is only a fraction of a
wavelength. It was only recent that the Imbert-Fedorov shift
is measured for a single total reflection �28�. Thus the physi-
cal mechanism for the transverse shift is still controversial.

In our previous paper �20�, we calculated this transverse
shift by using the conservation of the z component of TAM
for individual photons, which follows from the equations of
motion �60a�–�60c� applied to this interface problem. Bliokh
et al. �50� then questioned the result, claiming that it does not
match their result for elliptically polarized Gaussian beams.
Here we show that, in each case of generic polarizations, an
identical result for the transverse shift of each beam is given
by the following different approaches: �i� analytic evaluation
of wave-packet dynamics, �ii� TAM conservation for indi-
vidual photons in Ref. �20�, and �iii� numerically exact simu-
lation of wave-packet dynamics. It agrees with a result by
classical electrodynamics, as presented in Appendix F. In
Sec. III B, we shall resolve the inconsistency between the
identical result by the approaches �i�–�iii� and that given in
Ref. �50�. Thereby the validity of our theory presented here
is completely guaranteed.

Our equations of motion are not directly applicable to the
refraction and reflection problem at a sharp interface since
they require the slowly varying conditions ��ln � � , ��ln � �
�k. Indeed, our equations of motion do not correctly de-
scribe a splitting of an incident wave packet into reflected
and transmitted wave packets or changes of their polarization
states at the interface. However, in a case with a flat inter-
face, a simple extension of our theory works well, as will be
explained in the following. Here, as shown in Fig. 1, we
consider the case where the incident beam comes from the

FIG. 1. �Color� Transverse shift of light beams in the refraction
and reflection at an interface.
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region with x�0 and z�0 along the plane of y=const, and
the interface is the z=0 plane.

1. Analytic evaluation

Far from the interface, rc in Eq. �42� is easily estimated as

�rc�t→±� � �kA�A�kA,t → ± �� − �zA��kA�zA� , �61�

where A= I for t→−�, A=T or R for t→�. The momenta
kI,T,R and the polarization states �zI,T,R� are those of the inci-
dent �I�, transmitted �T�, and reflected �R� beams, respec-
tively. Due to the wave-packet splitting at the interface, our
semiclassical equations of motion do not tell us the values of
�zA� and �A. Hence for these variables, we borrow the results
of reflection or refraction of a plane wave. With a natural
choice of a wave packet presented in Appendix F, the y
component of the first term in Eq. �61� is unchanged at the
interface. Thus the transverse shift comes only from the sec-
ond term as

�yA = − �zA��kA�zA� + �zI��kI�zI� , �62�

where A=T or R. Substituting Eq. �59� in each Berry con-
nection �zA ��kA �zA� �A= I ,T ,R�, we obtain the following
equation for the transverse shift:

�yA =
1

kI sin �I
��zA��3�zA�cos �A − �zI��3�zI�cos �I� , �63�

where A=T or R, �I,T,R are the angles between the positive z
axis and the propagating directions of the incident, transmit-
ted, and reflected beams, respectively.

2. Total angular momentum conservation

Then, what is the physical meaning of the above result?
First, it should be noted that �z ��3 �z�= �z+�2− �z−�2 represents
the magnitude of spin polarization in the direction of kc, i.e.,
�z ��3 �z�= ±1 for right- or left-circular polarizations,
�z ��3 �z�=0 for linear polarizations, and ��z ��3 �z� ��1 for
elliptic polarizations. Therefore it is intuitively expected that
this phenomenon is closely related to the angular momentum
of a wave packet. For a system with rotational symmetry
around the z axis, the equations of motion lead to the
conservation of the z component of the following TAM:

jc = rc � kc + �zc��3�zc�
kc

kc
. �64�

This conservation is expected to hold even in the case of a
sharp interface, because it is based on the rotational symme-
try around the z axis. Actually, from Eq. �63� for the trans-
verse shift and Eq. �64� for the TAM, we can reach the con-
servation of the z component of the TAM for each of
individual photons,

jz
I = jz

T, jz
I = jz

R, �65�

where jI,T,R are the TAM of incident, transmitted, and re-
flected beams, respectively. It just makes sense that the inci-
dent beam is regarded as a collection of photons; each pho-
ton is reflected or transmitted stochastically at the interface.

As we shall see in Sec. III B �and Appendix F in detail�, Eq.
�63� for the transverse shift is consistent with the result
derived in classical electrodynamics. In this sense, this pho-
ton picture is implicitly incorporated already in classical
electrodynamics.

Inversely, assuming the conservation of TAM for indi-
vidual photons, we can derive the transverse shift as Eq.
�63�. This is what we have done in our previous paper �20�.
This derivation of the transverse shift is akin to the deriva-
tion of Snell’s law based on the particle picture of light in
which the refracted and reflected angles are obtained from
the conservation of energy and momentum �parallel to the
interface� for individual photons.

3. Numerical simulation

In order to verify our theory quantitatively, we check the
property of the transverse shift in more detail. To obtain
�zA ��3 �zA�, we decompose the incident wave as

�zI� =
z+

I + z−
I

2
�p� +

i�z+
I − z−

I �
2

�s� , �66�

where �p�= 1�2 �1,1� and �s�= 1�2 �−i , i� represent the p-
and s-polarized states. Straightforward calculation yields

�zA��3�zA� =
2��zI��3�zI�Re�Ap

*As� + �zI��2�zI�Im�Ap
*As��

�1 + �zI��1�zI���Ap�2 + �1 − �zI��1�zI���As�2
,

�67�

with A=T or R, and Tp and Ts �Rp and Rs� are the amplitude
transmission �reflection� coefficients for p and s polarization,
respectively.

When we focus on the partial reflection and refraction, Ap
and As are real, and Eq. �63� is rewritten as follows,

�yA =
�zI��3�zI�
kI tan �I

� 2ApAs cos �A/cos �I

�1 + �zI��1�zI��Ap
2 + �1 − �zI��1�zI��As

2 − 1� ,

�68�

where A=R or T. This means that the incident beams
with �z�=�e±i��/2� cos �� 2 ,e±i��/2� sin �� 2�, where � and
� represent the spherical coordinate of the Poincaré
sphere, cause the shift of the same magnitude and the
same direction with each other, i.e., the shift independent
of the sign of �. In addition, the incident beams with
�z�=�e�i��/2� sin �� 2 ,e±i��/2� cos �� 2� cause the shift of the
same magnitude as the above beams, but of the opposite
direction to them. In the partial reflection and refraction, no
shift is observed when an incident beam is linearly polarized.

On the other hand, in the total reflection, we have
�Rp � = �Rs � =1, and the shift of the reflected beam is repre-
sented by

�yR = −
1

kI tan �I
��zI��3�zI��Re�Rp

*Rs� + 1�

+ �zI��2�zI�Im�Rp
*Rs�� . �69�

In particular, for the incident beam with linear polarization
�z�= �e−i��/2�/2,ei��/2�/2�, the shift is the same magnitude

ONODA, MURAKAMI, AND NAGAOSA PHYSICAL REVIEW E 74, 066610 �2006�

066610-10



and the same direction for �=	 and �−	. The direction is
reversed by the replacement �→−� without change of the
magnitude.

We have confirmed all the above features quantitatively
by numerically solving Maxwell equations for wave packets.
In Ref. �20�, we have presented the results only for the inci-
dent beam with right-circular polarization. Here, to complete
the argument, we present the results of the numerical simu-
lations for more generic cases. Figure 2 shows the shifts for
the incident beam with the elliptical polarization z+

I /z−
I =2 at

the interfaces with relative refractive indices �a� n=2.0, �b�
n=0.8, and �c� for the incident beam with linear polarization
z+

I /z−
I = i at the interface with n=0.5. �We take the value of

magnetic permeability common in both media upper and
lower the interface, i.e., �1=�2, in these simulations.� The
solid and dashed lines represent the analytic results Eq. �63�
for transmitted and reflected beams, respectively. The filled
circles and squares are the results of simulations for trans-
mitted and reflected beams. We note that, in Fig. 2�c�, the
shift for the linearly polarized beam is nonzero only for a
region of total reflection, in accordance with our analytic
result. In all cases, the numerical results agree excellently
with Eq. �63�, thus verifying our theory. �We have confirmed
this consistency also in cases where both of permittivity and
permeability are different in two media upper and lower the
interface, i.e., �1��2 and �1��2.�

Finally we should comment on our constitution method of
a set of incident, transmitted, and reflected wave packets,
which is an exact solution of the Maxwell equations. In each
numerical simulation, we have constructed an elliptically
polarized incident wave packet as a superposition of
plane waves with a common polarization state, i.e., �zI�
which is independent of k. This is a natural definition of
incident wave packet. Otherwise, the concept “an elliptically
polarized incident wave packet” gets fuzzy, and the linear
composition from and decomposition to different orthonor-
mal bases of incident wave packets are violated. This is be-
cause incident wave packets with different functions of
��zI�k���’s for constituent plane waves can have the same
mean polarization state �zI�kI��. Imposing the exact boundary
conditions, transmitted and reflected wave packets are auto-
matically generated. For partial reflection, a single incident
wave packet split into reflected and transmitted wave packets
after reflection or refraction at the interface. The position of
each wave packet is estimated when each wave packet is far
from the interface. It should be noted that the numerical
simulations exactly take into account the changes of shapes
of wave packets, while the analytic evaluation assumes the
sharpness of a weight function for the superposition.

B. Remarks on other theories

Recently, Bliokh et al. calculated the shift for an elliptic
Gaussian incident beam in classical electrodynamics, and
their result disagrees with that obtained from our theory �50�.
They attributed the difference to a “fallacy” in our TAM
conservation for individual photons. We explain below in
detail that our theory is totally free from the criticism. To
prove this, it is enough to show that Eq. �63� is equivalent to

the transverse shift evaluated in classical electrodynamics,
i.e., the result by Fedoseev �26,27�. His procedure of calcu-
lation is as follows. First construct a wave packet by a linear
superposition of plane waves. By taking into account the

FIG. 2. Shifts of reflected and transmitted beams. n is the rela-
tive refractive index of the upper medium with respect to the lower
medium. �I is the wavelength of incident light in the lower medium.
The solid and dashed lines represent the analytic results Eq. �63� for
transmitted and reflected beams, respectively. The filled circles and
squares are the results of simulations for transmitted and reflected
beams.
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exact boundary conditions of electromagnetic fields �Eqs.
�70a� and �70b�� at a flat interface, as in the textbooks of
optics or classical electrodynamics �38,57�, one can construct
transmitted and reflected wave packets as a set of them is an
exact solution of the Maxwell equations. The center of each
wave packet is defined as an average position weighted by
each energy density. The result of this calculation by classi-
cal electrodynamics �26,27� is identical with that of our
theory �Eqs. �68� and �69� derived from Eq. �63�� in the
second quantized formalism. The details are presented in
Appendix F. Hence we checked that the following three
approaches give the same transverse shift for each wave
packet: �i� analytic evaluation of wave-packet dynamics
both in classical and quantum-mechanical formalisms, �ii�
TAM conservation for individual photons �Eq. �65��, �iii�
numerically exact simulation of wave-packet dynamics.

There remains an inconsistency between the identical
result obtained by �i�–�iii� and one by Bliokh et al. in Ref.
�50�. One reason is an inappropriate boundary condition for a
set of wave packets in their paraxial approximation. This
boundary condition is different from the correct one:

t · �EI�r,t� + ER�r,t�� = t · ET�r,t� , �70a�

t · �HI�r,t� + HR�r,t�� = t · HT�r,t� , �70b�

where t is an arbitrary unit vector parallel to the interface, EA

and HA �A= I ,T ,R� are electric and magnetic fields of inci-
dent �I�, transmitted �T�, and reflected �R� beams, respec-
tively. Another reason for this contradiction comes from the
definition of a center of wave packet in Ref. �50�. The
methods �i�–�iii� commonly use the position averaged with a
weight of energy density. In Ref. �50�, on the other hand, the
center is defined as a center of the wave packet projected
onto its mean polarization state. The center of the wave
packet in the former definition, i.e., the position averaged by
the energy density, can be easily measured by photon count-
ing, as employed in two measurements on the Imbert-
Fedorov shift �22,28�, while the latter definition requires
counting of photons projected onto a specified polarization.
The agreement between totally different approaches, i.e., �i�–
�iii� and classical electrodynamics, suggests that our
definition is a natural one.

Finally we should comment on the relation between
the conservation laws of TAM in the wave and particle pic-
tures of light. In Ref. �50�, it is claimed that, for an incident
beam with an elliptic polarization, the conservation of TAM
for individual photons �Eq. �65�� is inconsistent with the
conservation of TAM for whole beams,

jz
I = R2jz

R + T2n2�1 cos �T

n1�2 cos �I jz
T. �71�

However, as we shall show below, Eq. �65� is a sufficient
condition for Eq. �71�. From Fresnel formulas, we have

1 = Rp
2 + Tp

2 n2�1 cos �T

n1�2 cos �I
, �72a�

1 = Rs
2 + Ts

2n2�1 cos �T

n1�2 cos �I
, �72b�

for the p- and s-polarized beams, and also

1 = R2 + T2n2�1 cos �T

n1�2 cos �I
, �73�

for a beam with an arbitrary polarization, where

R2 =
Rp

2 + �m�2Rs
2

1 + �m�2
, T2 =

Tp
2 + �m�2Ts

2

1 + �m�2
, �74�

and m=zs /zp, �z�=zp�p�+zs�s�. The above formula represents
the conservation of energy flow or equivalently the conser-
vation of the number of photons. One can easily see that the
above formula and Eq. �65� yields Eq. �71�. To summarize,
the TAM conservation for individual photons �Eq. �65�� has
neither contradiction nor inconsistency with other theories.

C. Two-dimensional photonic crystal

We consider a two-dimensional photonic crystal, where
�J�r� and �J�r� are periodically modulated in the xy plane and
uniform along the z direction. For simplicity, �J�r� and �J�r�
are assumed to be locally isotropic and replaced by scalar
variables ��r� and ��r�. It is noted that in general there may
appear ordinary degeneracies at symmetric points and acci-
dental degeneracies at some specific points in the Brillouin
zone. Around these points, the semiclassical argument based
on the adiabaticity would not be a good approximation, and
it is needed to seriously incorporate wave-packet dynamics.
Here we restrict ourselves to bands without degeneracy. In
this case, the inversion symmetry of the periodic structure
must be broken in order for a band to have nonzero Berry
curvature. This is because the Fourier transformation of ��r�
and ��r� are real-valued, when a system has the inversion
symmetry.

For a wave packet constructed from a nondegenerate
band, the equations of motion in Eqs. �53a�–�53c� are
reduced to the following ones:

ṙc = �kc
Enkc;rc

+ k̇c � �nkc
, �75a�

k̇c = − �rc
Enkc;rc

, �75b�

żc = − i�k̇c · �nkc
+ fc

� · �nkc
�zc, �75c�

where rc and kc are the position and the momentum of an
optical wave packet. The parameter zc is a simple complex
number and just represents a phase shift. The definition of
other variables in the above equations are given in Tables II
and III. In the above equations of motion, the most important
and controllable quantity is the second term on the right-
hand side of Eq. �75a�, i.e., the Berry curvature �nkc

. The

anomalous velocity k̇c��nkc
of the optical wave packet

leads to the optical Hall effect. Compared with this term, the
other corrections due to �nkc

are small as shown below �see
also Appendix H�. Thus an optimal design for the enhance-
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ment of the optical Hall effect is equivalent to the enhance-
ment of the magnitude of the Berry curvature. In the present
case, the Berry curvature comes from an interband effect due
to a periodic structure without inversion symmetry, and
roughly scales as the inverse square of a band splitting �see
Eqs. �E3a� and �E3b��. Therefore we can expect the enhance-
ment of the optical Hall effect for wave packets constructed
from Bloch waves around nearly degenerate points in the
Brillouin zone. In two-dimensional photonic crystals, Bloch
waves propagating along the xy plane �kz=0� are classified
into the transverse magnetic �TM� and the transverse electric
�TE� modes. In other words, the Maxwell equations for the
Bloch functions �29a�–�29c� decouple into two sets of equa-
tions, one for the TM and the other for the TE modes, and the
problem of wave-packet dynamics can be more simplified.
Appendix G gives useful formulas for the Berry curvature
�nk and �nk in such modes. As for other modes and a more
generic case with degenerate bands, we must use formulas
given in Appendix E.

We present examples of the Berry curvatures and the
internal rotations of nondegenerate bands in the
two-dimensional photonic crystal with �=�0 and

�−1�r� =
4

3�5 + 12��� + 8�2��i=1

3 ��� − cos
bi · r +
2�

3
��2

+ �� + cos
bi · r −
2�

3
��2� , �76�

where b1= � 2�3
3a ,− 2�

3a
�, b2= �0, 4�

3a
�, b3=−b1−b2, and a is the

lattice constant. It is noted that, for 0� ����1, � represents
the degree of inversion-symmetry breaking. The spatial
distribution of ��r� and the band structure of TM and TE
modes are shown in Figs. 3�a� and 3�b�, respectively.

Figure 4 shows the Berry curvatures and the internal ro-
tations of the first and second bands of TM and TE modes.
The internal rotation of an optical wave packet is defined by
�zc�Snkc

�zc�= �W�J�W�−rc�Enkc
�kc

Enkc
, where �W�J�W� is

the total rotation of energy current and the second term rep-
resents the rotation of the center of gravity �see Appendixes
C, E, and G�. We can clearly see the correlation between
them in each band except for their relative sign. The relative
signs are roughly determined by a factor �E= �ETM�TE�nk

−ETM�TE�mk� at nearly degenerate points k, where n and m
represent band indices of nearly degenerate bands. This is
because the Berry curvature and the internal rotation are pro-
portional to 1/�E2 and 1/�E, respectively �see Appendix G�.
It is expected that this internal rotation is closely related to a
physical angular momentum. Therefore these results suggest
that we can generate a photonic mode with angular momen-
tum by using a photonic crystal without inversion symmetry.

Before considering the motion of wave packets in this
photonic crystal, we should comment on �TMnk and �TEnk,
which give corrections to energy dispersions and group ve-
locities of TM and TE modes. Because ��r�=�0 in the
present case, it follows from Eq. �G8a� in Appendix G that
�TMnk=0. Thus when a modulation is applied only to the

dielectric permittivity as 1/��r�→��
2�r� /��r�, the energy of

the TM mode is just rescaled by the factor ���rc�, i.e.,
ETMnkc

→ETMnkc;rc
=���rc�ETMnkc

. On the other hand, �TEnk is
nonzero. From Eq. �48�, additional corrections appear in the
energy dispersions of TE modes. However, as shown in Ap-
pendix H, we can see ��TEnk ��0.1a. Thus these corrections
are estimated to be at most a few percent as long as the
modulation is sufficiently weak, i.e., �a�rc

ln ���rc���1. In
the similar argument, we can also neglect corrections to the
group velocities of TE modes compared to their anomalous
velocities, at least in the present photonic crystal. All the
details of this issue are given in Appendix H.

FIG. 3. �Color� �a� Dielectric function and �b� band structure of
a two-dimensional photonic crystal. The Brillouin zone is shown in
Figs. 4 and 5�b�.
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Now we consider the motions of wave packets con-
structed from TM and TE modes. It is noted that these
wave packets are extended in the z direction, becaus
e the z components of their momentum are fixed as kz=0.
From Fig. 4, we can see that �k is strongly enhanced
near the corners of the Brillouin zone. This enhancement is
interpreted as a two-dimensional cut of the monopole struc-
ture in an extended space including parameters �9�, e.g.,
� in the present case. Therefore we set the initial kc near
the corners of the Brillouin zone in order to make the
effect of anomalous velocity prominent. We superimpose
the following modulation onto the periodic structure,
1 /��r�→��

2�r� /��r�,

1

���r�
=

1

2
��ñ + 1� + �ñ − 1�tanh

x

w
� , �77�

where ñ�0 represents a relative refractive index multiplied
to the periodic structure in the region x→�, and w is the
mean width of the modulation. Here we take ñ=1.2 and
w=5a which satisfy the condition of weak and slowly vary-
ing modulation. The obtained trajectories are shown in Fig.
5. It is found that the shift of rc reaches to dozens of times
the lattice constant especially for the wave packet con-
structed from the TE second band.

Finally we note that, also in more generic systems than
discussed above, this effect can be enhanced considerably by
designing crystal structures. The Berry curvature around a
nearly degenerate point is determined mostly by the splitting,
2�mg�, between neighboring bands. Note that the sign of mg

FIG. 4. �Color� Berry curvatures �a�–�d� and the internal rota-
tions �e�–�h� of the first and second bands of TM and TE modes in
the two-dimensional photonic crystal ��=0.5�.

FIG. 5. �Color� Trajectories of wave packets in �a� real and �b�
momentum spaces. The color of each arrow in �b� corresponds to
that of each line in �a�. The momentum-space trajectories in the
figure are drawn with appropriate shifts from their actual ones
which are on the line of ky =0 or the horizontal Brillouin-zone
boundary.
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depends on details of wave functions around the nearly de-
generate point, while its magnitude is determined only by the
splitting. Suppose that at k=k0 another band comes very
close in energy to the one considered. The Berry curvature
around k0 is evaluated as

�z �
v2mg

�v2�k − k0�2 + mg
2�3/2 , �78�

where v is a nominal velocity around k0. Thus when the light
traverses near k0, the shift is estimated as

�yc �
vmg

v2 2 + mg
2 sgn��xc

��xc�� , �79�

where  is the minimum value of �k−k0� when k traverses
near k0. Therefore in the case of  =0, the shift is larger for
smaller �mg�. This argument gives an intelligent explanation
of a relation among relative magnitudes and signs of the
shifts in Fig. 5.

IV. DISCUSSION

We have presented in detail the derivation of the equa-
tions of motion for an optical wave packet within the unitary
theory. In our formalism, the equations are derived in the
same fashion as those of electronic systems, thereby the
similarities between them are evident. This suggests that the
topological Hall effect driven by the geometrical mechanism
is a broad concept ranging over various areas of physics such
as electronic, photonic, acoustic, hydrodynamic, and relativ-
istic phenomena. For example, in Refs. �29–31�, the optical
Hall effect in an optical fiber is referred to as “the optical
Magnus effect” in analogy with the Magnus effect, which is
a transverse aerodynamic effect on rotating objects. On the
other hand, the relation of this effect to the geometrical effect
on a spinning particle in general relativity was recently
pointed out in Ref. �58�, where equations of motion similar
to ours are derived by considering the motion of a spinning
particle in a space with a metric gij�r�=n2�r��ij. This argu-
ment reminds us that, in the early stage of the study on
general relativity, Einstein had tried to formulate the theory
by generalizing the speed of light in vacuum. This issue
might be related to the deep question about the dual nature
between force and velocity in relativistic dynamics.

Here we should mention the effects called the photonic
Hall effect �39,40� and the magnetically induced deflection
due to the Pitaevskii magnetization �41–46�, both of which
are observed in Faraday-active media subject to external
magnetic fields. The former effect takes place in a random
medium, and is theoretically interpreted by the magnetically
induced off-diagonal components of a diffusion tensor �39�
and experimentally proved to be due to the magnetically in-
duced changes in the optical properties of scatterers �40�.
The latter effect is observed in a homogeneous medium �42�,
and is interpreted by the magnetically induced change in the
dispersion relation of each mode due to the Pitaevskii mag-
netization �41�. �Additional remarks on these effects are
given in Appendix I.� On the other hand, the optical Hall
effect is caused by the anomalous velocity due to the geo-

metrical propriety of a wave packet, which appears without
external magnetic field nor scatterers.

As shown in Sec. III C, there is a close relation between
the Berry curvature and the internal rotation. �See also Ap-
pendix E for details.� It is physically expected that an inter-
nal rotation can be related to an internal angular momentum.
From this viewpoint, Laguerre-Gauss beams, which have in-
ternal orbital angular momenta �59�, are of a particular inter-
est. The Imbert-Fedorov effect is expected for these beams as
well as for circularly polarized beams, and theoretical and
experimental investigations on this problem has been done
recently �60–62�. In Sec. III C, we have shown that there
appear photonic modes with internal rotations in a two-
dimensional photonic crystal without inversion symmetry.
An angular momentum corresponding to this kind of internal
rotation would be detected by measuring a torque working
on a photonic crystal when we inject a linearly polarized
light into the crystal �through a buffer layer if needed�.
In addition, when a photonic crystal is composed of Faraday-
active media and subject to an external magnetic field,
there would take place the magnetically induced deflection
due to the Pitaevskii magnetization caused by this kind of
generic internal rotation, rather than by the spin of circular
polarization.

Last, we make a remark on the relevance of the quantum
nature in the geometrical and topological properties dis-
cussed in this paper. Although we have formulated the theory
of an optical wave packet in the quantum-mechanical for-
malism in order to clarify its connection to that of an electron
wave packet, the phenomenon itself is based on the duality
between position and momentum which is common in wave
dynamics. Therefore the topological Hall effect is a generic
one in both quantum mechanics and classical wave dynamics
�see the argument in Appendix A�. Actually, we can extend
the argument on the enhancement of the optical Hall effect to
other kinds of wave-packet dynamics, e.g., dynamics of the
sonic wave packet which is mentioned in Ref. �30�. The
sonic Hall effect in phononic crystals �63,64� could be en-
hanced in the same manner as the optical Hall effect in pho-
tonic crystals. It should be noted that the spin of a constituent
particle is not always necessary; even a scalar wave can also
have an internal rotation and a Berry curvature due to a pe-
riodic structure breaking inversion and/or time-reversal
symmetries.

APPENDIX A: QUANTUM OR CLASSICAL?

In this paper, we employ a quantum-mechanical formal-
ism in order to formulate our theory of a photonic system on
an equal footing with that of an electronic system. The pho-
tonic system is described by an effective model where a di-
electric medium is regarded as a classical object. This quan-
tization procedure of photons is corresponding to that of
electrons described by an effective model, e.g., a model with
an effective mass-matrix and/or an effective �periodic� poten-
tial. In an electronic system, an electron is treated as a quan-
tum object, and the equations of motion for a semiclassical
wave packet are derived from an effective Lagrangian. In a
photonic system, the counterpart of this effective Lagrangian
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is most naturally represented in a second-quantized formal-
ism with keeping its close connection to that in an electronic
system. This is because, in the Maxwell theory, we cannot
define a positive-definite probability density, while we can
define a positive-definite energy density. �The second quan-
tization is adopted to define the quantum wave function of a
photon in Sec. II C, which cannot be directly represented by
the field strength of an electromagnetic field.� However, as
long as we consider an approximately coherent wave packet,
the center of wave packet coincides with the center of gravity
as shown in Sec. II C. This fact enables us to link our
quantum-mechanical theory and classical electrodynamics.

One may wonder whether the optical Hall effect is quan-
tum or classical. We cannot answer this question in a single
sentence, but give some remarks on it as follows. This effect
comes from the particle-wave duality of an optical wave
packet and the geometrical or topological property of a wave
function. Therefore similar geometrical or topological effects
are expected in various kinds of quantum or classical and
microscopic or macroscopic wave dynamics, when wave
packets under consideration are approximately coherent. In-
deed, we can formulate a theory for this class of phenomena
based on a classical wave dynamics of a macroscopic sys-
tem, while its direct connection to electronic systems is not
necessarily clear. The confusion represented by the above
question is mainly due to the situation in which we some-
times refer to wave equations for photonic systems as clas-
sical Maxwell equations and those for electronic systems as
quantum Schrödinger equations, while both photons and
electrons are quantum objects. The origin of this situation
comes from the following two advantages of photonic sys-
tems which lead to the success of classical Maxwell theory.
In contrast to electronic systems, �i� the statistics of photons
is bosonic, and �ii� effective self-interactions between pho-
tons are usually very weak. However, as long as we treat a
photon and an electron in a single particle approximation, we
can formulate both theories on an equal footing.

It is beyond the scope of this paper to fix the terminolo-
gies “quantum” and “classical” common in photonic and
electronic systems. Although we treat a photon as a quantum
object through to the end of this paper, we refer to results
obtained purely by wave dynamics of light as those obtained
by classical electrodynamics. As long as we consider an ap-
proximately coherent wave packet in a single particle ap-
proximation of quantum theory of a photon or in a linear
approximation of classical electrodynamics, results obtained
by both formalisms coincide with each other as shown in
Sec. III A.

APPENDIX B: ORTHONORMALITY OF
EIGENFUNCTIONS

The orthonormality, Eqs. �33a� and �33b�, is approved
with the orthonomality of Bloch functions, Eqs. �23a� and
�23b�. For example, Eq. �33a� can be shown by using the
following relation:

��n�k
E ��J��n���k�

E �

= �Enk + En�k�� � dr�n�k
E* �r,t��J�r��n���k�

E �r,t�

=
Enk + En�k�

2EnkEn�k�

ei�Enk−En�k��t

�� dre−i�k−k��·rUn�k
E* �r��J�r�Un���k�

E �r�

=
Enk + En�k�

2EnkEn�k�

ei�Enk−En�k��t

��
a
�

WS
dre−i�k−k��·�a+r�Un�k

E �r��J�r�Un���k�
E �r�

=
Enk + En�k�

2EnkEn�k�

ei�Enk−En�k��t�
G
�̃�k − k� + G�

��
WS

dr

vWS
e−i�k−k��·rUn�k

E �r��J�r�Un���k�
E �r� , �B1�

where a represents an arbitrary lattice vector. Since the lat-
tice momentum k and k� are in the first Brillouin zone, we
can reach the result

��n�k
E ��J��n���k�

E �

=
Enk + En�k

2EnkEn�k

ei�Enk−En�k�t�̃�k − k���Un�k
E ��J�Un���k

E �

= �nn������̃�k − k�� , �B2�

where we have used Eq. �23a�. In the same manner, Eq.
�33b�, can be also proved by using Eq. �23b�.

Next we prove the orthogonality, Eq. �33c�. From the
definition of the inner product, Eq. �32�, we can show

��n�k
E* ��J��n���k�

E � = �En�k� − Enk�

�� dr�n�k
E �r,t��J�r��n���k�

E �r,t� ,

�B3a�

��n�k
H* ��J ��n���k�

H � = �En�k� − Enk�

�� dr�n�k
H �r,t��J�r��n���k�

H �r,t� .

�B3b�

In the case of Enk=En�k�, it is clear that Eq. �33c� is
approved. Thus in what follows, we consider the case
of Enk�En�k�. In this case, we can easily show
�dr�n�k

E �r , t��J�r��n���k�
E �r , t�=0 and �dr�n�k

H �r , t��J�r�
��n���k�

H �r , t�=0 from the relations
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�En�k�
2 − Enk

2 � � dr�n�k
E �r,t��J�r��n���k�

E �r,t� = 0,

�B4a�

�En�k�
2 − Enk

2 � � dr�n�k
H �r,t��J�r��n���k�

H �r,t� = 0.

�B4b�

Consequently, the orthogonality, Eq. �33c� is approved in all
cases.

The above relations are derived from the eigenequations,
Eqs. �22a� and �22b�. For example, the relation for �n�k

E �r , t�
is proved as

En�k�
2 � dr�n�k

E �r,t��J�r��n���k�
E �r,t�

=� dr�n�k
E �r,t� · ��r � ��J−1�r��r � �n���k�

E �r,t���

=� dr��r � ��J−1�r��r � �n�k
E �r,t��� · �n���k�

E �r,t�

= Enk
2 � dr�n�k

E �r,t��J�r��n���k�
E �r,t� , �B5�

where �JT�r�=�J�r� is used in the transformation from the
second line to the third line, and �JT�r�=�J�r� is used in the
transformation from the third line to the fourth line. A similar
relation can be derived also for �n�k

H �r , t�.

APPENDIX C: WAVE PACKET IN A PERIODIC SYSTEM

Here we present details about an optical wave packet in a
periodic system. Basic features of the wave packet are dis-
cussed in Appendix C 1. These features are helpful to under-
stand the effect of an additional modulation superimposed
onto a periodic structure, which is discussed in Sec. II C.
Some comments on a gauge transformation in momentum
space are given in Appendix C 2. In Appendix C 3, we
present detailed procedures to evaluate expectation values
which appear in Appendix C 1.

1. Wave packet

We begin with the wave packet defined by

�W� = �
BZ

dkw�k,kc,t��
�

zc�an�k
† �0� , �C1a�

w�k,kc,t� = wr�k − kc�e−i��k,t�, �C1b�

where wr�k−kc� is a real function, and wr�k−kc� and zc�

satisfy the normalization conditions, �BZdkwr
2�k−kc�=1 and

���zc��2=1, respectively. We assume wr�k−kc� has a
sharp peak around kc=�BZdkwr

2�k−kc�k. It should be noted
that, rigorously speaking, we need to replace this single pho-
ton wave packet with a coherent �or squeezed� state wave
packet when we apply the present formalism to a light beam

with a macroscopic number of photons. However, from the
linearity of the Maxwell equations, the equations of motion
for the single photon wave packet is applicable also to the
macroscopic coherent beam.

In a fermionic system, we can define the position operator
as the center of the probability density of a fermion, which is
positive-definite both in nonrelativistic and relativistic cases.
However, for a relativistic boson, the definition of its posi-
tion is nontrivial. In order to find an appropriate definition
for the position of wave packet, we first consider the energy
and the position weighted by the energy density evaluated as
follows:

�W�H�W� � Enkc
, �C2a�

�W�R�W� � Enkc
��kc

��kc,t� − �zc��nkc
�zc�� . �C2b�

It should be noted that � in Eqs. �C2a� and �C2b� means
that the above expectation values are evaluated under
the assumption that the shape of wr

2�k−kc� is sufficiently
sharp compared to the variations of Enk and �nk�k� around
kc, and we neglected terms which depend on the shape of
wr

2�k−kc�.
From Eqs. �C2a� and �C2b�, the center of gravity is

estimated as

�W�R�W�
�W�H�W�

� �kc
��kc,t� − �zc��nkc

�zc� . �C3�

Comparing this result with the naive definition for the posi-
tion of wave packet, �BZ

dk
�2��3 wr

2�k−kc��k��k , t�, we can

reach the appropriate definition for the position of wave
packet,

rc = �
BZ

dkwr
2�k − kc���k��k,t� − �zc��nk�zc�� . �C4�

In order to check the property of the wave packet, we
consider the expectation values of physical observables. As
shown in Appendix C 3, the energy current and the rotation
of energy current are evaluated as

�W�P�W� � Enkc
�kc

Enkc
, �C5a�

�W�J�W� � rc � Enkc
�kc

Enkc
+ �zc�Snkc

�zc� , �C5b�

where

Snk =
1

2
�Snk

E + Snk
H � , �C6a�

�Snk
E ���� = −

i

2
���kUn�k

E � � ��JEnk
2 − �k

E���kUn��k
E �

+ �Un�k
E �S ��J−1S�Un��k

E �� , �C6b�
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�Snk
H ���� = −

i

2
���kUn�k

H � � ��JEnk
2 − �k

H���kUn��k
H �

+ �Un�k
H �S � �J−1S�Un��k

H �� . �C6c�

It is noted that the first term of �W�J�W� is interpreted as the
orbital rotational motion, i.e., the rotation of the center of
gravity, and the second term as the internal one, i.e., the
rotation around the center of gravity. Especially for the lo-
cally isotropic system in which �J�r� and �J�r� are scalar vari-
ables, ��r� and ��r�, the contribution from the second terms
in Snk

E and Snk
H are rewritten by using S�S= iS as

−
i

4
��Un�k

E �S ��J−1S�Un��k
E � + �Un�k

H �S � �J−1S�Un��k
H ��

→
1

4
��Un�k

E ��−1S�Un��k
E � + �Un�k

H ��−1S�Un��k
H �� . �C7�

This suggests that the internal rotation correctly includes the
spin of a constituent particle, i.e., the polarization of a light
in the present case. However, it should be noted that the
second terms on the right-hand side of Eqs. �C6b� and �C6c�
are not the whole contributions of spin. Actually, when we
consider the circularly polarized light in isotropic homoge-
neous media, all terms of the internal rotation give the same
contribution and totally represent the rotation originated by
the polarization. In addition, the internal rotation defined
above contains the internal orbital one and the spin one gen-
erally.

2. Gauge transformation

When a system has a symmetry represented by the unitary
matrix �Mnk����, Maxwell equations are invariant under the
transformation

�Ũn�k
F � = �

��

�Mnk�����Un��k
F � , �C8�

where F=E or H. �Here we consider the case in which there
are degeneracies indexed by the subscript � or ��.� For the
sake of convenience, we call this transformation as the gauge
transformation in k space. By this gauge transformation, �nk,
�nk, �nk, and Snk are transformed as

�̃nk = Mnk
−1�nkMnk − iMnk

−1�kMnk, �C9a�

�̃nk = Mnk
−1�nkMnk, �C9b�

�̃nk = Mnk
−1�nkMnk, �C9c�

S̃nk = Mnk
−1SnkMnk. �C9d�

The gauge transformation of Bloch functions in Eq. �C8� is
equivalent to that of the corresponding creation operators as

ãn�k
† = �

��

�Mnk����an��k
† . �C10�

In terms of these transformed operators, the wave packet in
Eq. �C1a� is represented by

�W� = �
BZ

dkw�k,kc,t��
�,��

�Mnk
−1����zc�ãn��k

† �0� . �C11�

It should be noted that we have changed only the represen-
tation but not the physical state of the wave packet. There-
fore the expectation values of physical observables, e.g., H,
R, P, and J, must be gauge invariant. Indeed, we can
easily show that the evaluations of H and P in Appendix C
1 are gauge invariant because of the invariance of Enk. From
Eqs. �C9b�–�C9d�, and Eq. �C11� we can also show the in-
variance of �zc��nk�zc�, �zc��nk�zc�, and �zc�Snk�zc�. However,
it is not clear whether the evaluations of R and J given in
Appendix C 1 are also the case. In order to confirm this
point, it is enough to check whether the position of wave
packet rc in Eq. �C4� is gauge invariant or not. In the repre-
sentation of Eq. �C11�, the derivative of phase factor
�k��k , t� and �zc��nk�zc� in Appendix C 1 are replaced as

�k��k,t� = i�zc�ei��k,t��ke−i��k,t��zc�

→ i�zc��ei��k,t�Mnk��k�e−i��k,t�Mnk
−1��zc� ,

�C12a�

�zc��nk�zc� → �zc�Mnk�̃nkMnk
−1�zc� . �C12b�

The above formulas and Eq. �C9a� prove the gauge invari-
ance of rc as follows:

r̃c = �
BZ

dkwr
2�k − kc��i�zc��ei��k,t�Mnk��k�e−i��k,t�Mnk

−1��zc�

− �zc�Mnk�̃nkMnk
−1�zc��

= rc + �
BZ

dkwr
2�k − kc�

�i�zc��Mnk��kMnk
−1� + ��kMnk�Mnk

−1��zc�

= rc. �C13�

Combining this result and the gauge invariance of Enk and
�zc�Snk�zc�, we can confirm that the evaluations of R and J
in Appendix C 1 are also gauge invariant.

3. Expectation values

Here we present the detailed evaluations of the expecta-
tion values, i.e., the Hamiltonian H, the position weighted by
the energy density R, the energy current P, and the rotation
of energy current J, with respect to the optical wave packet
�W� in a periodic system. The expectation value of an opera-
tor O is obtained from commutation relations between O and
the creation and annihilation operators,
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�W�O�W�

= �
BZ

dkdk�w*�k,kc,t�w�k�,kc,t��0�anzckOanzck�
† �0�

= �
BZ

dkdk�w*�k,kc,t�w�k�,kc,t��0�†anzck,�O,anzck�
†

‡��0� ,

�C14�

where we have introduced the abbreviation

anzck
�†� = �

�

zc�an�k
�†� , �C15�

and this will be used also for the Bloch functions as

�Unzck
E,H � = �

�

zc��Un�k
E,H� . �C16�

The basic commutation relation between B�r� and D�r� can
be represented in the following integral form:

� drdr���1
*�r� · B�r�,D�r�� · �2�r���

= − i� dr��r � �1
*�r�� · �2�r�

= − i� dr�1
*�r� · ��r � �2�r�� . �C17�

In particular, in a periodic system, by the above commutation
relation and Eqs. �21a� and �21b�, we can easily show that

�an�k,�H,an���k�
† �� = EnkEn�k�� dr��n�k

E* �r��J�r��n���k�
E �r�

+ �n�k
H* �r��J�r��n���k�

E �r��

= Enk�nn������̃�k − k�� . �C18�

In the transformation to the last line, we have used

� dre−i�k−k��·rFkk��r�

= �
a
�

WS
dre−i�k−k��·�a+r�Fkk��a + r�

= �
WS

dr

vWS
�
G
�̃�k − k� + G�e−i�k−k��·rFkk��r� ,

�C19�

where a represents an arbitrary lattice vector, and Fkk��r� is a
periodic function, i.e., Fkk��a+r�=Fkk��r�. Since k and k� are
in the first Brillouin zone, we have also used the following
relation implicitly:

�
G
�̃�k − k� + G��e−i�k−k��·r�k,k��1st BZ = �̃�k − k�� .

�C20�

Then we obtain the result

�W�H�W� = �
BZ

dkwr
2�k − kc�Enk � Enkc

. �C21�

In a similar manner, we obtain the following commutation
relation which is needed to estimate the expectation value of
R:

†an�k,�R,an���k�
† �‡ = EnkEn�k�� drr��n�k

E* �r��J�r��n���k�
E �r�

+ �n�k
H* �r��J�r��n���k�

H �r��

=
i

4
EnkEn�k����k − �k���̃�k − k���

� ��Un�k
E ��J�Un���k�

E � + �Un�k
H ��J �Un���k�

H �� .

�C22�

In the transformation to the last line, we have used the
relation

� drre−i�k−k��·rFkk��r�

=
i

2
� dr���k − �k��e

−i�k−k��·r�Fkk��r�

=
i

2�
a
�

WS
dr���k − �k��e

−i�k−k��·�a+r��Fkk��r�

=
i

2
�

WS

dr

vWS
Fkk��r�

����k − �k���
G
�̃�k − k� + G�e−i�k−k��·r� ,

�C23�

and Eq. �C20�. This commutation relation leads to the result

�W�R�W� =
i

2
�

BZ
dkEnk�w*�k,kc,rc,t��kw�k,kc,rc,t�

− ��kw*�k,kc,rc,t��w�k,kc,rc,t��

+
i

4
�

BZ
dkwr

2�k − kc�Enk

���Unzck
E ��J��kUnzck

E � − ��kUnzck
E ��J�Unzck

E �

+ �Unzck
H ��J ��kUnzck

H � − ��kUnzck
H ��J �Unzck

H ��

= �
BZ

dkwr
2�k − kc�Enk��k��k,t� − �zc��k�zc��

� Enkc
��kc

��kc,t� − �zc��kc
�zc�� . �C24�

The expectation value of P is estimated by using the
commutation relation
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�an�k,�P,an���k�
† �� = EnkEn�k�� dr��n�k

E* �r� � �n���k�
H �r�

− �n�k
H* �r� � �n���k�

E �r��

=
1

2
EnkEn�k�̃�k − k����Un�k

E �iS�Un���k
H �

− �Un�k
H �iS�Un���k

E �� , �C25�

where Eqs. �C19� and �C20� have been used. Combining this
commutation relation and the formula

Enk��Unzck
E �iS�Unzck

H � − �Unzck
H �iS�Unzck

E ��

= �Unzck
E ��S�J−1Pk · S + Pk · S�J−1S��Unzck

E �

= �Unzck
E ���k�k

E��Unzck
E � = �kEnk

2 , �C26�

we obtain the result

�W�P�W� =
1

2
�

BZ
dkwr

2�k − kc�Enk��Unzck
E �iS�Unzck

H �

− �Unzck
H �iS�Unzck

E ��

=
1

2
�

BZ
dkwr

2�k − kc��kEnk
2 � Enkc

�kc
Enkc

.

�C27�

The expectation value of J is derived from the commutation
relation

�an�k,�J,an���k�
† �� = EnkEn�k�� drr � ��n�k

E* �r� � �n���k�
H �r�

− �n�k
H* �r� � �n���k�

E �r��

=
i

4
EnkEn�k����k − �k���̃�k − k���

���Un�k
E �iS�Un���k�

H � − �Un�k
H �iS�Un���k�

E �� ,

�C28�

where we have used Eq. �C23� in the transformation to the
last line. It should be noted that, as in the previous commu-
tation relations, the above commutation relation is also re-
stricted to the case in which both k and k� are in the first
Brillouin zone. In addition, our wave packet is constructed
from degenerate eigenmodes, i.e., eigenmodes with the same
band index n. Thus the following formula, which will be
proved later, is useful to estimate the expectation value of J
with respect to the wave packet:

Enk

4
��Unzck

E �S � ��kUnzck
H � + ��kUnzck

E � � S�Unzck
H �

− �Unzck
H �S � ��kUnzck

E � − ��kUnzck
H � � S�Unzck

E ��

= − �zc��nk�zc� � �Enk�kEnk� + �zc�Snk�zc� . �C29�

Combining the above relation and the commutation relation,
we obtain the result

�W�J�W� = �
BZ

dkwr
2�k − kc����k��k,t�� � �Enk�kEnk�

+
Enk

4
��Unzck

E �S� ��kUnzck
H � + ��kUnzck

E ��S�Unzck
H �

− �Unzck
H �S� ��kUnzck

E � − ��kUnzck
H ��S�Unzck

E ���
= �

BZ
dkwr

2�k − kc����k��k,t� − �zc��nk�zc��

��Enk�kEnk� + �zc�Snk�zc��

� rc � �Enkc
�kc

Enkc
� + �zc�Snkc

�zc� . �C30�

The proof of Eq. �C29� needs basic but tedious calcula-
tions. Here we comment that the formula is confirmed by
using Eqs. �29a�–�31b� and the k derivatives of Eqs. �31a�
and �31b�. The outline of the derivation is given as follows:

�zc��nk�zc� � �Enk�kEnk�

+
Enk

4
��Unzck

E �S � ��kUnzck
H � + ��kUnzck

E � � S�Unzck
H �

− �Unzck
H �S � ��kUnzck

E � − ��kUnzck
H � � S�Unzck

E ��

=
i

8
���kUnzck

E � � ��k�k
E��Unzck

E �

+ ��kUnzck
H � � ��k�k

H��Unzck
H �

+ �Unzck
E ���k�k

E� � ��kUnzck
E �

+ �Unzck
H ���k�k

H� � ��kUnzck
H ��

−
i

4
���kUnzck

E � � ��JEnk
2 − �k

E���kUnzck
E �

+ ��kUnzck
H � � ��JEnk

2 − �k
H���kUnzck

H ��

−
i

4
��Unzck

H �Pk · S�J−1S � ��kUnzck
H �

+ ��kUnzck
E � � Pk · S�J−1S�Unzck

E �

+ �Unzck
E �Pk · S�J−1S � ��kUnzck

E �

+ ��kUnzck
H � � Pk · S�J−1S�Unzck

H ��

= −
i

4
���kUnzck

E � � ��JEnk
2 − �k

E���kUnzck
E �

+ ��kUnzck
H � � ��JEnk

2 − �k
H���kUnzck

H ��

+
i

8
���kUnzck

E � � �Pk · S�J−1S − S�J−1Pk · S��Unzck
E �

− �Unzck
E ��Pk · S�J−1S − S�J−1Pk · S� � ��kUnzck

E �

+ ��kUnzck
H � � �Pk · S�J−1S − S�J−1Pk · S��Unzck

H �

− �Unzck
H ��Pk · S�J−1S − S�J−1Pk · S� � ��kUnzck

H ��

ONODA, MURAKAMI, AND NAGAOSA PHYSICAL REVIEW E 74, 066610 �2006�

066610-20



= �zc�Snk�zc�

+
i

8
�k � ��Unzck

E ��Pk · S�J−1S − S�J−1Pk · S��Unzck
E �

+ �Unzck
H ��Pk · S�J−1S − S�J−1Pk · S��Unzck

H ��

= �zc�Snk�zc� . �C31�

APPENDIX D: EXPECTATION VALUES
IN A MODULATED SYSTEM

When a modulation is introduced into a periodic system,
the arguments given in Appendix C are modified. Here we
consider the modulation represented by Eq. �38� which is
sufficiently weak and smooth. It is noted that the commuta-
tion relation Eq. �C17� is not modified even under any modu-
lation. From this commutation relation, the creation and an-
nihilation operators of approximated eigenmodes satisfy the
same commutation relation as that in a periodic system as
shown below. However, the approximated eigenmodes de-
pend on the variable rc. Thus we must additionally take into
account the operator �rc

an�k;rc

† for the derivation of the ef-
fective Lagrangian. Fortunately, we can show that the contri-
bution from �rc

an�k;rc

† vanishes by the following relation:

�an�k;rc
,an���k�;rc

† �

= i� dr��n�k
E* �r� · ��r � �n���k�

H �r��

− ��r � �n�k
H* �r�� · �n���k�

E �r��

= �Enk + En�k�� � dr�n�k
E* �r��J�r��n���k�

E �r�

=
Enk + En�k

EnkEn�k

�̃�k − k���Un�k
E ��J�Un���k

E �

= �nn������̃�k − k�� , �D1a�

�an�k;rc
,�rc

an���k�;rc

† �

= −
i

2
��rc

ln
���rc�
���rc�

� � dr��n�k
E* �r� · ��r � �n���k�

H �r��

+ ��r � �n�k
H* �r�� · �n���k�

E �r��

=
1

2
��rc

ln
���rc�
���rc�

��Enk − En�k��

�� dr�n�k
E* �r��J�r��n���k�

E �r�

=
1

4
��rc

ln
���rc�
���rc�

�Enk − En�k

EnkEn�k

�̃�k − k���Un�k
E ��J�Un���k

E �

= 0, �D1b�

where, in each commutation relation, we have used Eqs.
�21a� from the first to the second expression, and Eqs. �C19�
and �C20� from the second to the third expression.

Next the expectation values of H and R in a modulated
system will be estimated. In the effective Lagrangian, we
retain terms up to the first order with respect to the derivative
of ���r� or ���r�. Therefore we need to estimate the expec-
tation value of H up to the first derivatives of the modulation
functions. As for the expectation value of R, we may ne-
glect derivative terms as was discussed in Sec. II C. The
commutation relations needed to estimate �W�H�W� and
�W�R�W� are calculated by derivative expansion with re-
spect to the modulation functions. First, the commutation
relation for �W�H�W� is estimated as follows:

†an�k;rc
,�H,an���k�;rc

† �‡

= Enk;rc
En�k�;rc� dr� ��

2�r�
��

2�rc�
�n�k

E* �r��J�r��n���k�
E �r�

+
��

2 �r�
��

2 �rc�
�n�k

H* �r��J�r��n���k�
H �r��

=
1

2
Enk;rc

En�k;rc
��̃�k − k����Un�k

E ��J�Un���k
E �

+ �Un�k
H ��J �Un���k

H �� + ie−i�k−k��·rc

����k − �k���̃�k − k��� · ���rc
ln ���rc��

��Un�k
E ��J�Un���k�

E �

+ ��rc
ln ���rc���Un�k

H ��J �Un���k�
H ��� + ¯ . �D2�

The first and second terms in the second expression come
from the terms of zeroth and first order of �r−rc� respec-
tively. In the transformation to the last expression, we have
used Eqs. �C19�, �C20�, and �C23�.

In the same manner, restricting to the case in which both
of k and k� are in the first Brillouin zone and using Eq.
�C23�, the commutation relation for �W�R�W� is estimated
as follows:

�an�k;rc
,�R,an���k�;rc

† ��

= Enk;rc
En�k�;rc� drr� ��

2�r�
��

2�rc�
�n�k

E* �r��J�r��n���k�
E �r�

+
��

2 �r�
��

2 �rc�
�n�k

H* �r��J�r��n���k�
H �r��

=
i

4
Enk;rc

En�k�;rc
���k − �k���̃�k − k���

���Un�k
E ��J�Un���k�

E � + �Un�k
H ��J �Un���k�

H �� + ¯ .

�D3�

From these commutation relations, we obtain the following
results which leads to the estimation of the center of gravity
as �W�R�W� / �W�H�W���k��kc ,rc ,zc , t�− �zc��nkc

�zc�,
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�W�H�W�

= �
BZ

dkwr
2�k − kc�Enk;rc

��1 + ��rc
ln����rc����rc��� · ��k��k,rc,zc,t� − rc�

− ��rc
ln ���rc�� · �zc��nk

E �zc�

+ ��rc
ln ���rc�� · �zc��nk

H �zc��

+ ¯

� „1 + ��rc
ln����rc����rc��� · �zc��nkc

�zc�

− ��rc
ln ���rc�� · �zc��nkc

E �zc�

+ ��rc
ln ���rc�� · �zc��nkc

H �zc�…Enkc;rc

= �1 − ��rc
ln

���rc�
���rc�

� · �zc��nkc
�zc��Enkc;rc

, �D4a�

�W�R�W�

=
i

2
�

BZ
dkEnk;rc

�w*�k,kc,rc,zc,t��kw�k,kc,rc,t�

− ��kw*�k,kc,rc,zc,t��w�k,kc,rc,t��

+
i

4
�

BZ
dkwr

2�k − kc�Enk;rc

���Unzck
E ��J��kUnzck

E � − ��kUnzck
E ��J�Unzck

E �

+ �Unzck
H ��J ��kUnzck

H � − ��kUnzck
H ��J �Unzck

H �� + ¯

= �
BZ

dkwr
2�k − kc�Enk;rc

��k��k,rc,zc,t� − �zc��nk�zc��

+ ¯

� Enkc;rc
��kc

��kc,rc,zc,t� − �zc��nkc
�zc�� . �D4b�

The above estimation for the center of gravity suggests
that the position rc defined by Eq. �42� may be regarded as
the center of gravity even in the case with a perturbative
modulation. In the derivation of the effective Lagrangian, we
need to estimate the inner product between the wave packet
and its time derivative. Finally we present the detail for the
calculation of this product, by regarding Eq. �42� as the
definition of the center of wave packet,

�W�i
d

dt
�W�

= i�
BZ

dkw*�k,kc,rc,zc,t�
d

dt
w�k,kc,rc,zc,t�

+ i�zc�żc� + i�
BZ

dkdk�w*�k,kc,rc,zc,t�w�k�,kc,rc,zc,t�

��0�anzck;rc
�ṙc · �rc

anzck�;rc

† ��0�

= �
BZ

dkwr
2�k − kc�

d

dt
��k,rc,zc,t� + i�zc�żc�

= − k̇c · �
BZ

dk��kc
wr

2�k − kc����k,rc,zc,t�

+ i�zc�żc� +
d

dt
�

BZ
dkwr

2�k − kc���k,rc,zc,t�

= k̇c · �
BZ

dk��kwr
2�k − kc����k,rc,zc,t� + i�zc�żc�

+
d

dt
�

BZ
dkwr

2�k − kc���k,rc,zc,t�

= − k̇c · �
BZ

dkwr
2�k − kc���k��k,rc,zc,t��

+ i�zc�żc� +
d

dt
�

BZ
dkwr

2�k − kc���k,rc,zc,t�

= − k̇c · �rc + �
BZ

dkwr
2�k − kc��zc��nkc

�zc��
+ i�zc�żc� +

d

dt
�

BZ
dkwr

2�k − kc���k,rc,zc,t�

� kc · ṙc − k̇c · �zc��nkc
�zc� + i�zc�żc�

+
d

dt��BZ
dkwr

2�k − kc���k,rc,zc,t� − kc · rc� , �D5�

where Eq. �D1b� and anzck;rc
�0�=0 are used in the transfor-

mation from the first expression to the second expression.

APPENDIX E: BERRY CURVATURE
AND INTERNAL ROTATION

In a system with generic periodic structure, it is tough
work to analytically calculate the Berry curvature and the
internal rotation. However, it is easy to obtain them numeri-
cally by rewriting inner products of Bloch functions and their
k derivatives to conventional matrix elements. Here we
present some formulas which are convenient for numerical
calculations.

For later convenience, we separate the Berry curvature as

�nk =
1

2
��nk

E + �nk
H � − i�nk � �nk, �E1a�

�nk
F = �k � �nk

F + i�nk
F � �nk

F , �E1b�

where F=E or H. In the following, we rewrite the k deriva-
tive in the above expression in terms of the Feynman-
Hellman relation. However, even if �Un�k

E,H� is a Bloch
function of a physical state, its derivative may have an un-
physical component proportional to �K�. In other words,
Bloch functions and their derivatives should be expanded by
nonorthogonal bases as follows:
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�Vk� = �
n,�

�Un�k
E ��Un�k

E ��J�Vk� + �
G,G�

�K��!k
E�−1�G,G���K���J�Vk� �E2a�

=�
n,�

�Un�k
H ��Un�k

H ��J �Vk� + �
G,G�

�K��!k
H�−1�G,G���K���J �Vk� , �E2b�

where !k
E�G ,G��=K�J�G ,G��K� and !k

H�G ,G��=K�J�G ,G��K�. By using the above expansion and the Feynman-Hellman
relation derived from Eqs. �31a� and �31b�, we can rewrite the Berry curvature as

��nk
E ���� = − i �

m�n,��

�Un�k
E ���k�k

E��Um��k
E � � �Um��k

E ���k�k
E��Un��k

E �

�Enk
2 − Emk

2 �2 + �Un�k
E ��J�!k

E�−1S�J�Un��k
E � , �E3a�

��nk
H ���� = − i �

m�n,��

�Un�k
H ���k�k

H��Um��k
H � � �Um��k

H ���k�k
H��Un��k

H �

�Enk
2 − Emk

2 �2 + �Un�k
H ��J�!k

H�−1S�J �Un��k
H � , �E3b�

��nk���� =
1

4Enk
��Un�k

E �S�Un��k
H � + �Un�k

H �S�Un��k
E �� . �E3c�

Thus �nk
F �F=E ,H� is enhanced when the band comes close to other bands in energy, with the enhancement being inversely

proportional to the square of energy difference. In contrast, �nk does not have such an enhancement. Though Eq. �E3c� seems
to diverge at Enk→0 �k→0�, it is not the case, as shown in Appendix 12 for a specific case. In the long-wavelength limit
k→0, a propagating light becomes insensitive to a spatial modulation of ��r� and ��r�, and a medium is regarded as uniform.
Because �nk=0 for a uniform isotropic medium, �nk in a generic periodic medium should behave as �nk→0 in the
long-wavelength limit.

In the same manner, the internal rotation is also rewritten as follows:

�Snk
E ���� =

1

2�− i �
m�n,��

�Un�k
E ���k�k

E��Um��k
E � � �Um��k

E ���k�k
E��Un��k

E �

Enk
2 − Emk

2

+ Enk
2 �Un�k

E ��J�!k
E�−1S�J�Un��k

E � − i�Un�k
E �S ��J−1S�Un��k

E �� , �E4a�

�Snk
H ���� =

1

2�− i �
m�n,��

�Un�k
H ���k�k

H��Um��k
H � � �Um��k

H ���k�k
H��Un��k

H �

Enk
2 − Emk

2

+ Enk
2 �Un�k

H ��J�!k
H�−1S�J �Un��k

H � − i�Un�k
H �S � �J−1S�Un��k

H �� . �E4b�

It should be noted that �nk
E and �nk

H have very similar ex-
pressions to Snk

E and Snk
H , respectively. This suggests that

there is always some kind of rotation when the Berry curva-
tures are nonzero. In this sense, we have generalized the
argument for the quantum Hall system in Ref. �36� to a pho-
tonic system. In the quantum Hall system, the internal rota-
tion is the internal orbital rotation originated by the cyclotron
motion under an external magnetic field. On the other hand,
in the present case, the internal rotation is the combination of
the polarization and the internal orbital rotation originated
from a periodic structure. When a system is isotopic and
homogeneous, Eqs. �E3a� and �E4b� are reduced to the Berry
curvature, k

k3�3, and the spin divided by ��, 1
�� · k

k�3. These

contributions come only from the terms including the spin
operator S, and �nk=0, i.e., nonzero �nk is originated by the
anisotropy or the periodic structure of �J and �J. Even in
generic cases, �nk has the dimension of length, and its
magnitude is a lattice constant at most.

APPENDIX F: TRANSVERSE SHIFT IN CLASSICAL
ELECTRODYNAMICS

Here we prove the consistency between our result for the
transverse shift �Eq. �63��, which is consistent with the TAM
conservation for individual photons �Eq. �65��, and the result
by Fedoseev �26,27�, which is based on classical electrody-
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namics. In Refs. �26,27�, each wave packet is constructed as
a superposition of plane waves with wave vectors k=kc+	,
where 	 are distributed around zero vector. �In the notation
of Refs. �26,27�, kc is represented by K.� The polarization
vector of each constituent plane wave is defined by Eq. �23�
in Ref. �26� with Eq. �7� in Ref. �27�,

e�j��	� = zs
�j��	�s�j��	� + zp

�j��	�p�j��	� , �F1�

where j= i ," ,# for incident, reflected, and transmitted beams,
respectively, zs

�j��	� and zp
�j��	� ��zs

�j��	��2+ �zp
�j��	��2=1� repre-

sent the polarization state of each plane wave, s�j��	� and
p�j��	� are the s- and p-polarization vectors defined by

s�j��	� =
n � k

�n � k�
, p�j��	� = s�	� �

k

�k�
, �F2�

where n= �0,0 ,1� is normal to the interface, and we
consider the same configuration of the interface and
beams as those in Sec. III A. The relation between
the present notation and that in Ref. �27� is represented as
zs

�j��	�↔A�j��	� /�A�j��	��2+ �B�j��	��2 and zp
�j��	�↔B�j��	� /

�A�j��	��2+ �B�j��	��2, n↔N, and k / �k�↔m�	�.
By the Maxwell equations, zs

�",#��	� and zp
�",#��	� are

exactly given by

zs
�j��	� =

ts
�j��	�zs

�i��	�
�ts

�j��	�zs
�i��	��2 + �tp

�j��	�zp
�i��	��2

, �F3a�

zp
�j��	� =

tp
�j��	�zp

�i��	�
�ts

�j��	�zs
�i��	��2 + �tp

�j��	�zp
�i��	��2

, �F3b�

where j=" or #, ts
�"��	� and tp

�"��	� are the amplitude reflec-
tion coefficients for the s- and p-polarized plane waves,
ts
�#��	� and tp

�#��	� are the amplitude transmission coefficients
for the s- and p-polarized plane waves, i.e., ts

�"�↔Rs,
tp
�"�↔Rp, ts

�#�↔Ts, and tp
�#�↔Tp in our notation in Sec. III A.

In our constitution method for an incident wave packet,
the polarization state of each constituent plane wave, i.e., the
set of zs

�i� and zp
�i�, is independent of 	. Otherwise, the concept

of “an elliptically polarized incident wave packet” gets fuzzy
�see Sec. III A 3�. Thus this is a natural definition for an
elliptically polarized incident wave packet. Its polarization
vector is represented also in the following form,

e�i��	� =
p�i��	� + ms�i��	�

1 + �m�2
, �F4�

where m is a complex constant, representing the polarization
state. This m is identical with m defined by Bliokh et al. �50�,
and related with our �zI� in Sec. III A by

�zI� =
1

2�1 + �m�2�

1 − im

1 + im
� . �F5�

It yields

�zI�
�zI� =
1

1 + �m�2
�1 − �m�2,2 Re�m�,2 Im�m�� �F6�

which is used for comparison between the results here
and those based on our theory of the TAM conservation for
individual photons.

We now calculate the transverse shift from Eqs. �15�–�17�
in Ref. �27�. The result is a sum of two terms

�y�j� = h�j1� + h�j2�, �F7�

where j=" or #, and �y�"�↔�yR and �y�#�↔�yT in our
notation in Sec. III A. From Eqs. �13a�, �13b�, �17�, and �18�
in Ref. �27�, the second term of right-hand side, h�j2�, is
proportional to the  y derivative of Im�ln zs

�j��	�−ln zp
�j��	��

FIG. 6. �Color� Difference between the electric and magnetic
parts of the Berry connection for each of �a� the TE first band and
�b� the TE second band, i.e., �TEnk= ��TEnk

E −�TEnk
H � /2. The base of

a logarithm is 10.
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at 	=0. The amplitude reflection and refraction coefficients
depend only on the polar angle, and thus their derivatives by
 y at 	=0 are zero, because the y component of kc is zero in
the present configuration. As was mentioned previously, zs

�i�

and zp
�i� are independent of 	. Therefore from Eqs. �F3a� and

�F3b�, h�j2�=0 �j=" ,#�, and we have

�y�j� = h�j1�

= − i
n · �e�j��0� � e�j�*�0��

�n � k�j��
+ i

n · �e�i��0� � e�i�*�0��
�n � k�i��

,

�F8�

where k�j� �j=" or #� are mean wave vectors for reflected �"�
and transmitted �#� wave packets. Note that the correspon-
dence between these wave vectors and those in Sec. III A are
k�i�↔kI, k�"�↔kR, and k�#�↔kT. Equation �F8� is identical
with Eq. �63�, showing an equivalence between Fedoseev’s
theory based on classical electrodynamics and ours.

Finally, we rewrite Eq. �F8� in terms of our notation in
Sec. III A. For partial reflection, Ap and As are real, and we
get

�yA =
2 Im�m�
kI sin �I

� �As/Ap�cos �A

1 + �As/Ap�2�m�2
−

cos �I

1 + �m�2� , �F9�

where A=T or R. By rewriting Eq. �F9� in terms of �zI�, the
shift is equal to our result in Eq. �68� but not to Eq. �5� in
Ref. �50�. For total reflection, Rp and Rs are complex
numbers with �Rp�= �Rs�=1, and we get

�yA =
− 2 cos �I

kI sin �I

Im�m��Re�Rp
*Rs� + 1� + Re�m�Im�Rp

*Rs�
1 + �m�2

.

�F10�

This is exactly the same as ours in Eq. �69�. To summarize,
for every case, the calculation based on classical electrody-
namics gives the identical result with ours based on our
quantum-mechanical formalism, and this result is consistent
with the TAM conservation for individual photons.

APPENDIX G: BERRY CURVATURE
IN A TWO-DIMENSIONAL

PHOTONIC CRYSTAL

In order to discuss the TM and TE modes, it is convenient
to introduce the following unit vectors:

eK =
K

K
, eI =

ez � eK

�ez � eK�
, �G1�

and the Bloch functions are represented by

��UTEmk
E � = eI � �UTEmk

D � , �G2a�

��UTEmk
H � = ez � �UTEmk

B � , �G2b�

for the TE modes and

��UTMmk
E � = ez � �UTMmk

D � , �G3a�

��UTMmk
H � = eI � �UTMmk

B � , �G3b�

for the TM modes. The superscripts, D and B, mean that they
correspond to the electric and magnetic flux densities, re-
spectively, satisfying the transversality condition, i.e., being
perpendicular to K.

The matrices for the eigen equations given in Eqs. �26c�
and �26d� are simplified in the case with scalar ��r� and ��r�
as follows:

�k
E�G,G�� = �k�G,G���−1�G,G�� , �G4a�

�k
H�G,G�� = �k�G,G���−1�G,G�� , �G4b�

where �k�G ,G��= �K ·K�I−K� � K�, and their derivatives are
represented by

�kx
�k�G,G�� = � 0 − Ky − kz

− Ky� Kx + Kx� 0

− kz 0 Kx + Kx�
� , �G5a�

�ky
�k�G,G�� = �Ky + Ky� − Kx� 0

− Kx 0 − kz

0 − kz Ky + Ky�
� , �G5b�

�kz
�k�G,G�� = � 2kz 0 − Kx�

0 2kz − Ky�

− Kx − Ky 0
� . �G5c�

because G and G� have no z components.
From the above formula together with Eqs. �E3a� and

�E3b� and by setting kz=0, we can easily show that the Berry
curvature of a nondegenerate TM �TE� mode has only a z
component,

�TMnk
E,z = 2 �

m�n

Im��UTMnk
E ���kx

�k
E��UTMmk

E ��UTMmk
E ���ky

�k
E��UTMnk

E ��

�ETMnk
2 − ETMmk

2 �2 , �G6a�

�TMnk
H,z = 2 �

m�n

Im��UTMnk
H ���kx

�k
H��UTMmk

H ��UTMmk
H ���ky

�k
H��UTMnk

H ��

�ETMnk
2 − ETMmk

2 �2 + �UTMnk
H ���!k

H�−1Sz��UTMnk
H � , �G6b�

�TEnk
E,z = 2 �

m�n

Im��UTEnk
E ���kx

�k
E��UTEmk

E ��UTEmk
E ���ky

�k
E��UTEnk

E ��

�ETEnk
2 − ETEmk

2 �2 + �UTEnk
E ���!k

E�−1Sz��UTEnk
E � , �G6c�
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�TEnk
H,z = 2 �

m�n

Im��UTEnk
H ���kx

�k
H��UTEmk

H ��UTEmk
H ���ky

�k
H��UTEnk

H ��

�ETEnk
2 − ETEmk

2 �2 . �G6d�

Note that the above contributions for the Berry curvature of the TM �TE� nth band do not necessarily decrease when the energy
ETM�TE�nk increases in contrast to the case without a periodic structure, because nearly degenerate points due to a band structure
enhance the magnitude of the Berry curvature.

Following the same argument as that about the Berry curvature, the internal rotation also has only the z component for
nondegenerate bands,

STMnk
E,z = �

m�n

Im��UTMnk
E ���kx

�k
E��UTMmk

E ��UTMmk
E ���ky

�k
E��UTMnk

E ��

ETMnk
2 − ETMmk

2 , �G7a�

STMnk
H,z = �

m�n

Im��UTMnk
H ���kx

�k
H��UTMmk

H ��UTMmk
H ���ky

�k
H��UTMnk

H ��

ETMnk
2 − ETMmk

2

+
1

2
�ETMnk

2 �UTMnk
H ���!k

H�−1Sz��UTMnk
H � + �UTMnk

H ��−1Sz�UTMnk
H �� , �G7b�

STEnk
E,z = �

m�n

Im��UTEnk
E ���kx

�k
E��UTEmk

E ��UTEmk
E ���ky

�k
E��UTEnk

E ��

ETEnk
2 − ETEmk

2

+
1

2
�ETEnk

2 �UTEn�k
E ���!k

E�−1Sz��UTEn��k
E � + �UTEnk

E ��−1Sz�UTEnk
E �� , �G7c�

STEnk
H,z = �

m�n

Im��UTEnk
H ���kx

�k
H��UTEmk

H ��UTEmk
H ���ky

�k
H��UTEnk

H ��

ETEnk
2 − ETEmk

2 . �G7d�

It is interesting that the internal rotation of a photon can be
perpendicular to its propagating direction in a two-
dimensional photonic crystal.

We also calculate �nk from Eq. �E3c�. For nondegenerate
bands, there is no contribution to the Berry curvature �nk
from the vector product of �TM�TE�nk in Eq. �E1a�, because
�TM�TE�nk is a simple vector variable, not a set of matrices.
Meanwhile, �TM�TE�nk may modify the energy spectrum
when a modulation is applied. �TM�TE�nk is given as follows:

�TMnk =
1

2ETMnk
2 Im��UTMnk

D ��−1�−1Pk�
−1�UTMnk

D �� ,

�G8a�

�TEnk =
1

2ETEnk
2 Im��UTEnk

B ��−1Pk�
−1�−1�UTEnk

B �� .

�G8b�

In many cases, we can approximately regard the magnetic
permeability � to be constant. Then �TMnk vanishes from Eq.
�G8b�, whereas �TEnk does not in general.

APPENDIX H: REMARKS ON �TEnk

Here we evaluate �TEnk for the two-dimensional photonic
crystal discussed in Sec. III C and see its effect on the energy

dispersion and group velocity for each of the first and second
bands of TE mode. From Eq. �48�, an additional correction
appears in the energy of each TE mode as

ETEnkc;rc

ETEnkc;rc

= 1 − ��rc
ln ���rc�� · �TEnkc

, �H1�

where ETEnkc;rc
=���rc�ETEnkc

. Figure 6 shows �TEnk for the
first and second bands of TE mode and we can see �TEnk
�0.1a. Therefore the correction is at most a few percent as
long as the modulation is sufficiently weak, i.e.,
�a�rc

ln ���rc���1. In order to make the argument complete,
we also calculate a correction to the group velocity of a TE
mode,

�kc
ETEnkc;rc

= �kc
ETEnkc;rc

− �kc
���rc

���rc�� · �TEnkc
ETEnkc

�

� �kc
ETEnkc;rc

+ $JTEnkc
k̇c, �H2a�

$JTEnk
ij = �k

i �TEnk
j + ��k

i ln ETEnk��TEnk
j . �H2b�

Here we used the relation k̇c�−��rc
���rc��ETEnkc

for smooth
and weak modulation. By plugging Eq. �H2a� to the equation

of motion for rc in Eq. �53a�, $JTEnk is a variable to be com-
pared with the Berry curvature. Figure 7 shows that the ef-
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fect of $JTEnk is negligibly small compared to the effect of
the Berry curvature in the present case. However, it is noted
that, even when a Berry connection is nonzero, the corre-
sponding Berry curvature can vanish. �This is easily under-
stood by the analogy of a Berry connection and a Berry
curvature to a vector potential and a magnetic field.� In such

a case, �TEnk and $JTEnk are not necessarily minor correc-
tions. These corrections may become measurable enough for
a generic modulation superimposed onto a periodic structure,
while, in this paper, we mainly consider a slowly varying
modulation in order to assure the validity of our argument.

APPENDIX I: DIFFERENCE FROM MAGNETICALLY
INDUCED DEFLECTIONS

It was proposed theoretically �39� and observed experi-
mentally �40� that, in a Faraday-active random medium sub-

ject to a magnetic field perpendicular to an incident beam,
the diffusion flow of light is deflected in a direction perpen-
dicular to both the incident light beam and the externally
applied magnetic field. This effect seems to be more similar
to the conventional electrical Hall effect than the optical Hall
effect is, because the effect is caused by the external mag-
netic field and the direction of deflection is perpendicular to
it. However, it should be noted that, unlike electrons, photons
are not charged, and their orbital motions do not directly
couple to an external magnetic field. This effect is theoreti-
cally interpreted by the magnetically induced off-diagonal
components of a diffusion tensor and experimentally proved
to be due to the magnetically induced changes in the optical
properties of scatterers �39,40�. In this sense, this effect is
similar to the anomalous Hall effect due to the skew scatter-
ing mechanism, rather than to the conventional Hall effect.
On the other hand, the optical Hall effect is originated by the

FIG. 7. �Color� $JTEnk, which is related to the correction of group velocity for each of �a� the TE first band with an x-directional
modulation, �b� the TE first band with a y-directional modulation, �c� the TE second band with an x-directional modulation, and �d� the TE
second band with a y-directional modulation. The base of a logarithm is 10.
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anomalous velocity of an optical wave packet which appears
without external magnetic field or scatterers.

This kind of phenomenon, i.e., magnetically induced de-
flection, is not restricted to random media. The deflection of
light by a magnetic field in a nonscattering homogeneous
medium has also been discussed theoretically �41� and ob-
served experimentally �42�. When the effect of absorption in
a Faraday-active medium is negligible, the linear effect of
external magnetic field B on this medium is described by the
dielectric tensor,

�Jij = n2��ij + 2i�ijk�k� , �I1a�

� =
�

2n2B , �I1b�

where n is the refractive index of the medium in the case of
B=0, Re� and Im� represent the strength of the magnetic
circular birefringence and that of magnetic circular dichro-
ism respectively, while we set Im�=0. The eigenmodes of
the dielectric displacement D=�JE in such a medium are ex-
plicitly given in Ref. �43�, and they are represented in terms
of the orthogonal unit vectors ek, e�, and e� in the spherical
coordinate of the k space as

D+ % �eB · ek�e� + i�CB + ��eB � ek�2�e�, �I2a�

D− % �CB + ��eB � ek�2�e� − i�eB · ek�e�, �I2b�

CB = �eB · ek�2 + �2�eB � ek�4. �I2c�

Here eB is a unit vector defined by �=�eB with the condition
eB ·ek&0, and e� �eB�ek, e�=e��ek. �When Im��0, � is a
complex-valued parameter.� These eigenmodes have the dis-
persion relations and the group velocities

E±,k =
vk

1 − 2�2�eB � ek�2 � 2�CB

, �I3a�

v±,k =
E±,k

k
�ek �

�

CB
�eB � ek��eB · ek�e�� , �I3b�

where v=1/n. The direction of the Poynting vector of each
mode coincides with v±,k as long as Im�=0. It should be
noted that the deflection occurs within the plane determined
by k and B. The angle �� between the propagating directions
of two eigenmodes with the same k is given in Ref. �43� and
represented in the present notation as

�� = 2 arctan
��eB � ek��eB · ek�

�eB · ek�2 + �2�eB � ek�4
. �I4�

For the exact Voigt geometry �eB ·ek=0�, there appears no
deflection �43,44�. The physics of this phenomenon is intu-
itively interpreted by considering the first order perturbation
with respect to � and the situation in which the angles be-
tween eB and ek are not close to the Voigt geometry, i.e.,
eB ·ek' �� � �eB�ek�2. The approximated eigenvalues and
group velocities are represented as follows;

E±,k � v�k ± � · k� , �I5a�

v±,k � v�ek ± �� . �I5b�

This effect comes from the magnetically induced change in
the dispersion relation of each mode due to the Pitaevskii
magnetization, ±v� ·k �41�. On the other hand, the optical
Hall effect is caused by the anomalous velocity due to the
geometrical property of a wave packet.

In the above perturbative picture, D± are approximately
equivalent to right/left circularly polarized modes which
have the spin angular momenta, ±ek. Therefore the above
interpretation based on the Pitaevskii magnetization means
that an external magnetic field couples to the spin of a pho-
ton through a Faraday-active medium. From this consider-
ation, we reasonably expect that an external magnetic field
couples not only to the spin but also to a generic internal
rotation of photon in the form of dipole coupling. �Conse-
quently, this effect is expected for Laguerre-Gauss beams
which have internal orbital angular momenta.� As shown in
Sec. III C, there appear eigenmodes with large internal rota-
tions in a two-dimensional photonic crystal without inversion
symmetry. Here we take the configuration in which the pho-
tonic crystal is periodic in the xy plane and uniform along the
z direction. Considering an eigenmode with kz=0, its internal
rotation is oriented in the z direction, i.e., perpendicular to its
propagating direction. Thus when the photonic crystal is
composed of Faraday-active media and subject to an external
magnetic field, it is expected that the magnetically induced
deflection can be enhanced. In addition, this effect would be
observed even in the Voigt geometry. The details of this
problem is beyond the scope of the present paper and will be
discussed elsewhere. Here we just note that this effect in a
Faraday-active photonic crystal is due to the magnetically
induced change of dispersion relation as well as that in a
homogeneous Faraday-active medium, and is different from
the optical Hall effect in a photonic crystal discussed in Sec.
III C.
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